People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Estrela, Pedro
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2021CRISPR-based electrochemical sensor for COVID-19 diagnostics
- 2021Graphene enabled low-noise surface chemistry for multiplexed sepsis biomarker detection in whole bloodcitations
- 2020Electrochemical ELISA Protein Biosensing in Undiluted Serum Using a Polypyrrole-Based Platformcitations
- 2019A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantificationcitations
- 2019Reduced Graphene-Oxide Transducers for Biosensing Applications Beyond the Debye-Screening Limitcitations
- 2019In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive electrochemical binding capabilitycitations
- 2019Multiplexed Electrochemical Platform for sepsis Diagnostics
- 2017Raman and Mössbauer spectroscopic studies of tungsten doped Ni–Zn nano ferritecitations
- 2017Nanomaterial fungicides: In vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungicitations
- 2016Electrochemical biosensors and nanobiosensorscitations
- 2016Inexpensive and fast pathogenic bacteria screening using field-effect transistorscitations
- 2016Inexpensive and fast pathogenic bacteria screening using field-effect transistorscitations
- 2016Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigencitations
- 2011Room temperature processed ISFETs based on amorphous semiconductors oxides
- 2002High pressure transport study of non-Fermi liquid behaviour in U2Pt2In and U3Ni3Sn4
- 2002Pressure-induced recovery of the Fermi-liquid state in the non-Fermi liquid material U2Pt2Incitations
- 2000Possible non-Fermi-liquid behaviour in URh1/3Ni2/3Alcitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical biosensors and nanobiosensors
Abstract
Electrochemical techniques have great promise for low-cost, miniaturised, easy-to-use, portable devices for a wide range of applications – in particular medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes a share of around 70% of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.<br/>In this chapter we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors due to the use of nanomaterials such as carbon nanotubes and graphene are presented as well as well as future directions that the field is taking.<br/>