Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Graham, Duncan

  • Google
  • 9
  • 41
  • 201

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2016Elucidation of the bonding of a near infrared dye to hollow gold nanospheres19citations
  • 2010Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine80citations
  • 2009Functionalized nanoparticles for nucleic acid sequence analysis using optical spectroscopies9citations
  • 2008Multidentate macromolecules for functionalisation, passivation and labelling of metal nanoparticles12citations
  • 2006A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance raman spectroscopy (SERRS)27citations
  • 2005Benzotriazole rhodamine B: effect of adsorption on surface-enhanced resonance Raman scattering10citations
  • 2003The crystal structures of three primary products from the selective reduction of 2,4,6-trinitrotoluene14citations
  • 2003Squid-based nondestructive evaluation of carbon fiber reinforced polymer20citations
  • 2001Benzotriazole maleimide as a bifunctional reactant for SERS10citations

Places of action

Chart of shared publication
Sengupta, S.
1 / 2 shared
Ivan, R. Sasselli
1 / 1 shared
Verlarde, Luis
1 / 1 shared
Detty, Michael R.
1 / 2 shared
Smith, W. E.
6 / 8 shared
Bromley, L.
1 / 1 shared
Bedics, Matthew A.
1 / 1 shared
Tuttle, Christopher
1 / 1 shared
Faulds, Karen
2 / 6 shared
Kearns, H.
1 / 1 shared
Jamil, H.
1 / 1 shared
Irvine, Eleanore
1 / 1 shared
Curran, Judith M.
1 / 2 shared
Amro, N. A.
1 / 1 shared
Sanedrin, R. G.
1 / 1 shared
Hunt, John A.
1 / 4 shared
Stokes, Robert
1 / 1 shared
Macaskill, A.
1 / 1 shared
Stokes, R.
1 / 1 shared
Mackenzie, F.
1 / 1 shared
Thompson, D.
1 / 4 shared
Hernandez-Santana, A.
1 / 1 shared
Cormack, Peter
1 / 7 shared
Mckenzie, F.
1 / 1 shared
Prasath, R. A.
1 / 1 shared
Khan, Imran R.
1 / 1 shared
Cunningham, D.
1 / 1 shared
Mccomb, D. W.
1 / 7 shared
Lazar, Sorin
1 / 1 shared
Mccabe, A. F.
1 / 1 shared
Mckeown, D.
1 / 1 shared
Kennedy, Alan
1 / 5 shared
Mchugh, C. J.
1 / 1 shared
Shankland, K.
1 / 5 shared
David, W. I. F.
1 / 4 shared
Shankland, N.
1 / 2 shared
Carr, C.
1 / 2 shared
Donaldson, G. B.
1 / 1 shared
Macfarlane, J. C.
1 / 1 shared
Grondin, A.
1 / 1 shared
Robson, D. C.
1 / 1 shared
Chart of publication period
2016
2010
2009
2008
2006
2005
2003
2001

Co-Authors (by relevance)

  • Sengupta, S.
  • Ivan, R. Sasselli
  • Verlarde, Luis
  • Detty, Michael R.
  • Smith, W. E.
  • Bromley, L.
  • Bedics, Matthew A.
  • Tuttle, Christopher
  • Faulds, Karen
  • Kearns, H.
  • Jamil, H.
  • Irvine, Eleanore
  • Curran, Judith M.
  • Amro, N. A.
  • Sanedrin, R. G.
  • Hunt, John A.
  • Stokes, Robert
  • Macaskill, A.
  • Stokes, R.
  • Mackenzie, F.
  • Thompson, D.
  • Hernandez-Santana, A.
  • Cormack, Peter
  • Mckenzie, F.
  • Prasath, R. A.
  • Khan, Imran R.
  • Cunningham, D.
  • Mccomb, D. W.
  • Lazar, Sorin
  • Mccabe, A. F.
  • Mckeown, D.
  • Kennedy, Alan
  • Mchugh, C. J.
  • Shankland, K.
  • David, W. I. F.
  • Shankland, N.
  • Carr, C.
  • Donaldson, G. B.
  • Macfarlane, J. C.
  • Grondin, A.
  • Robson, D. C.
OrganizationsLocationPeople

article

Functionalized nanoparticles for nucleic acid sequence analysis using optical spectroscopies

  • Graham, Duncan
  • Macaskill, A.
  • Stokes, R.
  • Mackenzie, F.
  • Faulds, Karen
  • Thompson, D.
Abstract

SERRS (surface-enhanced resonance Raman scattering) is a vibrational spectroscopy which allows extremely sensitive and selective detection of labelled DNA sequences with detection limits which rival, and in most cases Surpass, that of fluorescence. SERRS relies on a visible chromophore adsorbing on to an enhancing surface. DNA itself is not SERRS-active, as it lacks a suitable visible chromophore and has poor adsorption properties on to the surfaces used for enhancement. The surface normally used for enhancement in these sorts of studies are metallic nanoparticles and, through modification of DNA probes by the addition of suitable SERRS labels, signals can be obtained that are highly sensitive and very selective. The aggregation state of the nanoparticles is critical to the sensitivity, and, in the present paper, we show how straightforward detection of labelled DNA probes can be achieved using SERRS in a quantitative manner and with a variety of different commercially available labels. in a second approach, we show how the properties of aggregation to turn on the SERRS effect can be exploited through DNA hybridization to give identification of a particular DNA sequence. This approach lends itself to closed-tube formats and is a promising way forward for molecular diagnostics using SERRS.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • vibrational spectroscopy