Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Takatsuna, Yuuki

  • Google
  • 2
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Sustainable food packaging using modified kombucha-derived bacterial cellulose nanofillers in biodegradable polymers4citations
  • 2024Sustainable food packaging using modified SiO2 nanofillers in biodegradable polymers1citations

Places of action

Chart of shared publication
Reimhult, Erik
2 / 6 shared
Bismarck, Alexander
2 / 142 shared
Koreshkov, Mikhail
2 / 2 shared
Zirbs, Ronald
2 / 4 shared
Fritz, Ines
2 / 2 shared
Antreich, Sebastian J.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Reimhult, Erik
  • Bismarck, Alexander
  • Koreshkov, Mikhail
  • Zirbs, Ronald
  • Fritz, Ines
  • Antreich, Sebastian J.
OrganizationsLocationPeople

article

Sustainable food packaging using modified SiO2 nanofillers in biodegradable polymers

  • Reimhult, Erik
  • Bismarck, Alexander
  • Koreshkov, Mikhail
  • Takatsuna, Yuuki
  • Zirbs, Ronald
  • Fritz, Ines
  • Antreich, Sebastian J.
Abstract

<p>The need to switch to bio-based, biodegradable and/or fully recyclable polymers is becoming increasingly clear, especially in the area of food packaging, which is a major contributor to plastic pollution. To meet this challenge, biodegradable polymers must not only be economically viable, but also have properties that match or better those of conventional fossil-based polymers, such as robust mechanical strength and efficient gas barrier properties. One promising route is the production of composite materials from biodegradable polymers and SiO<sub>2</sub> nanoparticles. However, the high surface energy of SiO<sub>2</sub> often leads to agglomeration of the filler in the hydrophobic polymer matrix, which compromises the integrity of the composite. Here we present an innovative approach in which the surface of silica nanoparticles is modified with l-lactic acid oligomers (OLLA), effectively reducing the agglomeration of the filler and improving processability. Using conventional polymer processing methods that comply with industry standards, we prepared PLLA and PHBV nanocomposites and evaluated the effectiveness of the modification using a novel SBF-SEM technique. Our results show that modified silica achieves better dispersion in the polymer matrix and yields 70% more independent particles in the nanocomposite. The introduction of OLLA-g-SiO<sub>2</sub> increases the oxygen barrier of PLLA by 38% while accelerating the biodegradation rate and improving the toughness of the eco-friendly nanocomposites. This innovative approach offers a sustainable solution that is set to revolutionise the landscape of green food packaging.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • surface
  • polymer
  • scanning electron microscopy
  • Oxygen
  • strength
  • surface energy