People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Singh, Baljeet
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mesoporous silica-amine beads from blast furnace slag for CO<sub>2</sub> capture applications
Abstract
Steel slag, abundantly available at a low cost and containing over 30 wt% silica, is an attractive precursor for producing high-surface-area mesoporous silica. By employing a two-stage dissolution-precipitation method using 1 M HCl and 1 M NaOH, we extracted pure SiO2, CaO, MgO, etc. from blast furnace slag (BFS). The water-soluble sodium silicate obtained was then used to synthesize mesoporous silica. The resulting silica had an average surface area of 100 m2 g−1 and a pore size distribution ranging from 4 to 20 nm. The mesoporous silica powder was further formed into beads and post-functionalized with polyethyleneimine (PEI) for cyclic CO2 capture from a mixture containing 15% CO2 in N2 at 75 °C. The silica-PEI bead was tested over 105 adsorption–desorption cycles, demonstrating an average CO2 capture capacity of 1 mmol g−1. This work presents a sustainable approach from steel slag to cost-effective mesoporous silica materials and making CO2 capture more feasible