Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Othman, Mostafa

  • Google
  • 5
  • 41
  • 116

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024A Universal Perovskite/C60 Interface Modification via Atomic Layer Deposited Aluminum Oxide for Perovskite Solar Cells and Perovskite–Silicon Tandems34citations
  • 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskites15citations
  • 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskites15citations
  • 2024A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems34citations
  • 2022Structural and Photophysical-Properties in Guanidinium-Iodide-Treated Perovskite Solar Cells18citations

Places of action

Chart of shared publication
Wolff, Christian Michael
2 / 15 shared
Steele, Julian A.
2 / 13 shared
Artuk, Kerem
2 / 5 shared
Hesslerwyser, Aïcha
1 / 1 shared
Moon, Soojin
1 / 1 shared
Jacobs, Daniel A.
3 / 5 shared
Ballif, Christophe
3 / 23 shared
Tiwari, Ayodhya N.
2 / 50 shared
Chin, Xin Yu
1 / 3 shared
Turkay, Deniz
2 / 5 shared
Jeangros, Quentin
4 / 16 shared
Mensi, Mounir D.
2 / 2 shared
Wirtz, Tom
1 / 10 shared
Chernyshov, Dmitry
2 / 23 shared
Tabean, Saba
1 / 2 shared
Hessler-Wyser, Aïcha
3 / 14 shared
Futscher, Moritz H.
2 / 15 shared
Züfle, Simon
1 / 3 shared
Kuba, Austin G.
1 / 3 shared
Zeiske, Stefan
2 / 8 shared
Jenatsch, Sandra
2 / 7 shared
Savenije, Tom J.
1 / 36 shared
Ruhstaller, Beat
1 / 12 shared
Eswara, Santhana
1 / 4 shared
Jaffrès, Anaël
1 / 1 shared
Zhao, Jiashang
1 / 6 shared
Armin, Ardalan
1 / 9 shared
Olff, Christian M. W.
1 / 1 shared
Savenije, T. J.
1 / 12 shared
Zhao, J.
1 / 34 shared
Wolff, Christian M.
1 / 9 shared
Moon, Soo Jin
1 / 1 shared
Yu Chin, Xin
1 / 1 shared
Nakashima, Philip
1 / 1 shared
Zhang, Tian
1 / 6 shared
Etheridge, Joanne
1 / 3 shared
Fuhrer, Sebastian
1 / 1 shared
Mcmeekin, David P.
1 / 3 shared
Li, Weilun
1 / 1 shared
Mao, Wenxin
1 / 1 shared
Bach, Udo
1 / 19 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Wolff, Christian Michael
  • Steele, Julian A.
  • Artuk, Kerem
  • Hesslerwyser, Aïcha
  • Moon, Soojin
  • Jacobs, Daniel A.
  • Ballif, Christophe
  • Tiwari, Ayodhya N.
  • Chin, Xin Yu
  • Turkay, Deniz
  • Jeangros, Quentin
  • Mensi, Mounir D.
  • Wirtz, Tom
  • Chernyshov, Dmitry
  • Tabean, Saba
  • Hessler-Wyser, Aïcha
  • Futscher, Moritz H.
  • Züfle, Simon
  • Kuba, Austin G.
  • Zeiske, Stefan
  • Jenatsch, Sandra
  • Savenije, Tom J.
  • Ruhstaller, Beat
  • Eswara, Santhana
  • Jaffrès, Anaël
  • Zhao, Jiashang
  • Armin, Ardalan
  • Olff, Christian M. W.
  • Savenije, T. J.
  • Zhao, J.
  • Wolff, Christian M.
  • Moon, Soo Jin
  • Yu Chin, Xin
  • Nakashima, Philip
  • Zhang, Tian
  • Etheridge, Joanne
  • Fuhrer, Sebastian
  • Mcmeekin, David P.
  • Li, Weilun
  • Mao, Wenxin
  • Bach, Udo
OrganizationsLocationPeople

article

Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskites

  • Wolff, Christian Michael
  • Othman, Mostafa
  • Wirtz, Tom
  • Chernyshov, Dmitry
  • Tabean, Saba
  • Hessler-Wyser, Aïcha
  • Futscher, Moritz H.
  • Jacobs, Daniel A.
  • Züfle, Simon
  • Ballif, Christophe
  • Kuba, Austin G.
  • Zeiske, Stefan
  • Jenatsch, Sandra
  • Savenije, Tom J.
  • Ruhstaller, Beat
  • Eswara, Santhana
  • Jaffrès, Anaël
  • Zhao, Jiashang
  • Jeangros, Quentin
  • Armin, Ardalan
Abstract

The technique of alloying FA + with Cs + is often used to promote structural stabilization of the desirable α-FAPbI 3 phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in Cs x FA 1−x PbI 3 perovskite thin-films and solar-cell devices. Selected-area electron diffraction patterns combined with microwave conductivity measurements reveal that fine Cs + tuning (Cs 0.15 FA 0.85 PbI 3 ) leads to a minimization of stacking faults and an increase in the photoconductivity of the perovskite films. Ultra-sensitive external quantum efficiency, kelvin-probe force microscopy and photoluminescence quantum yield measurements demonstrate similar Urbach energy values, comparable surface potential fluctuations and marginal impact on radiative emission yields, respectively, irrespective of Cs content. Despite this, these nanoscopic defects appear to have a detrimental impact on inter-grains’/domains’ carrier transport, as evidenced by conductive-atomic force microscopy and corroborated by drastically reduced solar cell performance. Importantly, encapsulated Cs 0.15 FA 0.85 PbI 3 devices show robust operational stability retaining 85% of the initial steady-state power conversion efficiency for 1400 hours under continuous 1 sun illumination at 35 °C, in open-circuit conditions. Our findings provide nuance to the famous defect tolerance of halide perovskites while providing solid evidence about the detrimental impact of these subtle structural imperfections on the long-term operational stability.

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • surface
  • photoluminescence
  • grain
  • phase
  • electron diffraction
  • atomic force microscopy
  • defect
  • power conversion efficiency
  • stacking fault
  • photoconductivity