People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lajaunie, Luc Cyrille Jacques
Universidad de Cádiz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Combining low-loss EELS experiments with machine learning-based algorithms to automate the phases separation imaging in industrial duplex stainless steels
- 2024AlN interlayer-induced reduction of dislocation density in the AlGaN epilayer
- 2023Textural, Microstructural and Chemical Characterization of Ferritic Stainless Steel Affected by the Gold Dust Defectcitations
- 2019Investigating the Possible Origin of Raman Bands in Defective sp2/sp3 Carbons below 900 cm−1: Phonon Density of States or Double Resonance Mechanism at Play?citations
Places of action
Organizations | Location | People |
---|
article
AlN interlayer-induced reduction of dislocation density in the AlGaN epilayer
Abstract
The emerging ultrawide-bandgap AlGaN alloy system holds promise for the development of advanced materials in the next generation of power semiconductor and UV optoelectronic devices. Within this context, heterostructures based on III-nitrides are very popular in view of their applications as electronic and optoelectronic components. AlGaN-based deep UV emitters are gaining visibility due to their disinfection capabilities. Likewise, high electron mobility transistors are attracting increasing attention owing to their superior electron transport which yields high-speed and high-power applications. These devices are conventionally made of AlGaN/GaN heterostructures grown on foreign substrates. However, structural defects, including stress induced by a mismatch in unit cell parameters and the presence of dislocations, can not only decrease the efficiency of the light emitters (by facilitating the non-radiative recombination of electron-hole pairs), but also impede electron mobility within the two-dimensional electron gas at the AlGaN/GaN interface. Therefore, the significance of obtaining high-quality AlGaN layers becomes evident. Including a thin AlN interlayer between the GaN buffer layer and AlGaN is a possible answer to address these drawbacks. Not only do we show that a thin AlN layer, approximately ≤3 nm in thickness, between the GaN buffer and AlGaN layers, is effective in decreasing the dislocation densities in the AlGaN layer by around 30%, but also this is responsible for an increase in the electron mobility (approximately 33%) compared to a classical AlGaN/GaN heterostructure. Additionally, the resulting heterostructure exhibits better optical quality, with a 7-fold increase in intensity as well as a 20% reduction in full-width at half-maximum in the AlGaN emission.