People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bose, Ranjita K.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Characterizing Dissipative Elastic Metamaterials Produced by Additive Manufacturingcitations
- 2023Oxidative chemical vapor deposition for synthesis and processing of conjugated polymers: A critical reviewcitations
- 2023Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Depositioncitations
- 2023Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Depositioncitations
- 2023Electrically and thermally healable nanocomposites via one-step Diels-Alder reaction on carbon nanotubescitations
- 2023Effect of intermolecular interactions on the glass transition temperature of chemically modified alternating polyketonescitations
- 2023Effect of intermolecular interactions on the glass transition temperature of chemically modified alternating polyketonescitations
- 2023Oxidative chemical vapor deposition for synthesis and processing of conjugated polymerscitations
- 2023Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode materialcitations
- 2022All-dry, one-step synthesis, doping and film formation of conductive polypyrrolecitations
- 2022Production and Application of Polymer Foams Employing Supercritical Carbon Dioxidecitations
- 2022Rapid self-healing in IR-responsive plasmonic indium tin oxide/polyketone nanocompositescitations
- 2022Initiated Chemical Vapor Deposition (iCVD) of Bio-Based Poly(tulipalin A) Coatingscitations
- 2022Initiated Chemical Vapor Deposition (iCVD) of Bio-Based Poly(tulipalin A) Coatings:Structure and Material Propertiescitations
- 2021Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Compositescitations
- 2021Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Compositescitations
- 2021Self-Healing Polymer Nanocomposite Materials by Joule Effectcitations
- 2021Polytriphenylamine composites for energy storage electrodescitations
- 2020Highly Branched Waxy Potato Starch-Based Polyelectrolyte:Controlled Synthesis and the Influence of Chain Composition on Solution Rheologycitations
- 2020Highly Branched Waxy Potato Starch-Based Polyelectrolytecitations
- 2019Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bondscitations
- 2019Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bondscitations
- 2018A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymerscitations
- 2016Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocompositescitations
- 2016Healing of early stage fatigue damage in ionomer/Fe3O4 nanoparticle compositescitations
- 2015Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobaltcitations
- 2015Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymerscitations
- 2015Acylhydrazones as reversible covalent crosslinkers for self-healing polymerscitations
- 2012Microencapsulation of a crop protection compound by initiated chemical vapor depositioncitations
- 2012Polymer electronic materials for sustainable energies
- 2012Graft polymerization of anti-fouling PEO surfaces by liquid-free initiated chemical vapor depositioncitations
- 2009Initiated chemical vapor deposition (iCVD) of hydrogel polymerscitations
Places of action
Organizations | Location | People |
---|
article
Oxidative chemical vapor deposition for synthesis and processing of conjugated polymers
Abstract
Oxidative chemical vapor deposition (oCVD) has developed progressively in the last two decades as a solvent-free (or dry) methodology for synthesis and thin film deposition of conjugated polymers. This method has offered new opportunities beyond traditional solution processing methods in the research of these materials. It is crucial to have a clear understanding of the differences between the solvent-free vs. solvent-based methodologies for synthesis and thin film deposition of conjugated polymers. Herein, the strengths and limitations of each procedure are compared in order to provide guidelines for future research and development. This review systematically approaches this comparison by first characterizing the thin films in terms of their chemical and physical properties. Then, the interfacial properties of a conjugated polymer thin film with the underlying substrate are critically compared when two different processing methods are exploited. Finally, the effect of the substrate on the coating properties and performance is reviewed.