People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engels, Tom A. P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditionscitations
- 2023Effect of temperature, rate, and molecular weight on the failure behavior of soft block copoly(ether-ester) thermoplastic elastomerscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanescitations
- 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanescitations
- 2021Influence of fiber orientation, temperature and relative humidity on the long-term performance of short glass fiber reinforced polyamide 6citations
- 2021NIR–vis–UV Light-Responsive High Stress-Generating Polymer Actuators with a Reduced Creep Ratecitations
- 2020Physical background of the endurance limit in poly(ether ether ketone)citations
- 2020Processing and Properties of Melt Processable UHMW-PE Based Fibers Using Low Molecular Weight Linear Polyethylene'scitations
- 2020Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strengthcitations
- 2020Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strengthcitations
- 2020Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayerscitations
- 2019Predicting plasticity-controlled failure of glassy polymerscitations
- 2019Predicting plasticity-controlled failure of glassy polymers:influence of stress-accelerated progressive physical agingcitations
- 2019An untethered magnetic- and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuatorscitations
- 2018Predicting long-term crack growth dominated static fatigue based on short-term cyclic testingcitations
- 2018Predicting long-term crack growth dominated static fatigue based on short-term cyclic testingcitations
- 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-bandcitations
- 2017Future nanocomposites : exploring multifunctional multi-layered architectures
- 2017Photonic shape memory polymer with stable multiple colorscitations
- 2015Yield stress distribution in injection-moulded glassy polymerscitations
- 2012Time-dependent failure of amorphous poly-D,L-lactide : influence of molecular weightcitations
- 2011Criteria to predict the embrittlement of polycarbonatecitations
- 2010Time-dependent failure in load-bearing polymers : a potential hazard in structural applications of polylactidescitations
- 2010Lifetime assessment of load-bearing polymer glasses : an analytical framework for ductile failurecitations
- 2009Improvement of the long-term performance of impact-modified polycarbonate by selected heat treatmentscitations
- 2009Predicting the long-term mechanical performance of polycarbonate from thermal history during injection moldingcitations
- 2009Predicting the yield stress of polymer glasses directly from processing conditions: application to miscible systemscitations
- 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic statecitations
- 2008Does the strain hardening modulus of glassy polymers scale with the flow stress?citations
- 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?
- 2005Quantitative prediction of long-term failure of Polycarbonatecitations
Places of action
Organizations | Location | People |
---|
article
Effect of temperature, rate, and molecular weight on the failure behavior of soft block copoly(ether-ester) thermoplastic elastomers
Abstract
<p>Thermoplastic elastomers (TPEs) based on multiblock copolymers are an important class of engineering polymers. They are widely used in many applications where flexibility and durability are required and are seen as a sustainable (recyclable) alternative to thermoset rubbers. While their high-temperature mechanical behavior has received recent interest, few studies have explored their fracture and fatigue behavior. Understanding how the temperature and rate-dependence of the deformation behavior at both a local and global scale influences the fatigue resistance and failure behavior is critical when designing with these materials. In this study, the failure behavior in tensile, fracture, and fatigue of well-characterized, industrially relevant, model block copoly(ether-ester) based TPEEs were evaluated over a wide range of temperatures, deformation rates, and molecular weights. Small changes in temperature or rate are shown to result in a sharp transition between a highly deformable and notch resistant response, to a more brittle and strongly notch-sensitive response. This behavior surprisingly manifests itself as a threshold strain below which the cracks do not propagate in fatigue and increasing deformation rates decreases the materials toughness in fracture tests, whereas in tensile tests the opposite is observed. The change from homogenous to inhomogeneous stress fields for tensile and fracture experiments coupled with the viscoelasticity and strain-dependent morphology of TPEs explains why a different rate dependency is observed. Strain and stress delocalization is key to achieve high toughness. Digital Image Correlation is used to measure the size and time dependence of the process zone. Comparison with micromechanical models developed for soft, elastic, and tough double network gels highlights the dominance of high strain properties for toughness and explains the strong molecular weight dependence. However, to understand the rate dependence, the characteristic times for stress transfer from the crack tip and the time to nucleate failure must be compared. The results presented in this study demonstrate the complex effect of loading conditions on the intrinsic failure mechanisms of the TPE material, and provide a first attempt at rationalizing that behavior.</p>