Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Isokuortti, Jussi

  • Google
  • 3
  • 11
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Triplet-Sensitized Bidirectional Isomerization of Bridged Azobenzenecitations
  • 2023Triplet sensitization enables bidirectional isomerization of diazocine with 130 nm redshift in excitation wavelengths10citations
  • 2023Triplet sensitization enables bidirectional isomerization of diazocine with 130 nm redshift in excitation wavelengths10citations

Places of action

Chart of shared publication
Raeker, Tim
3 / 3 shared
Glasenapp, Jan-Simon Von
2 / 2 shared
Herges, Rainer
3 / 6 shared
Filatov, Mihail A.
1 / 1 shared
Durandin, Nikita A.
2 / 2 shared
Laaksonen, Timo
2 / 12 shared
Griebenow, Thomas
3 / 3 shared
Von Glasenapp, Jan-Simon
1 / 1 shared
Filatov, Mikhail A.
2 / 2 shared
Laaksonen, Timo Johannes
1 / 6 shared
Durandin, Nikita
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Raeker, Tim
  • Glasenapp, Jan-Simon Von
  • Herges, Rainer
  • Filatov, Mihail A.
  • Durandin, Nikita A.
  • Laaksonen, Timo
  • Griebenow, Thomas
  • Von Glasenapp, Jan-Simon
  • Filatov, Mikhail A.
  • Laaksonen, Timo Johannes
  • Durandin, Nikita
OrganizationsLocationPeople

article

Triplet sensitization enables bidirectional isomerization of diazocine with 130 nm redshift in excitation wavelengths

  • Isokuortti, Jussi
  • Raeker, Tim
  • Laaksonen, Timo Johannes
  • Glasenapp, Jan-Simon Von
  • Herges, Rainer
  • Durandin, Nikita
  • Filatov, Mikhail A.
  • Griebenow, Thomas
Abstract

Diazocines are bridged azobenzenes with phenyl rings connected by a CH2–CH2 group. Despite this rather small structural difference, diazocine exhibits improved properties over azobenzene as a photoswitch and most importantly, its Z configuration is more stable than the E isomer. Herein, we reveal yet another unique feature of this emerging class of photoswitches. In striking contrast to azobenzenes and other photochromes, diazocine can be selectively switched in E → Z direction and most intriguingly from its thermodynamically stable Z to metastable E isomer upon successive excitation of two different triplet sensitizers present in solution at the same time. This approach leads to extraordinary large redshift of excitation wavelengths to perform isomerization i.e. from 400 nm blue to 530 nm green light (Z → E) and from 530 nm green to 740 nm far-red one (E → Z), which falls in the near-infrared window in biological tissue. Therefore, this work opens up of potential avenues for utilizing diazocines for example in photopharmacology, smart materials, light energy harvesting/storage devices, and out-of-equilibrium systems.

Topics
  • impedance spectroscopy