People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kløve, Magnus
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Optical Floating-Zone Furnace Single-Crystal Synthesis of van der Waals Material InSe
- 2024Optical Floating-Zone Furnace Single-Crystal Synthesis of van der Waals Material InSe
- 2024H2S-Treated Nickel Foam Electrocatalyst for Alkaline Water Electrolysis under Industrial Conditionscitations
- 2024Efficient and scalable H2S treated nickel foam electrocatalyst for alkaline water electrolysis under industrial conditions
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of Pb x Pd y intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2022Synthesis of Phase-Pure Thermochromic VO2 (M1)citations
Places of action
Organizations | Location | People |
---|
article
Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scattering
Abstract
<p>Pd possesses attractive catalytic properties and nano-structuring is an obvious way to enhance catalytic activity. Alloying Pd with Pb has been shown to enhance the catalytic effect of alcohol oxidation. Further optimization of the catalytic effect can be accomplished by controlling the particle size and key to this is understanding the formation mechanism. By monitoring solvothermal syntheses using in situ X-ray total scattering, this study unveils the formation mechanism of PbxPdy intermetallic nanoparticles. The formation occurs through a multi-step mechanism. Initially, Pd nanoparticles are formed, followed by incorporation of Pb into the Pd-structure, thus forming PbxPdy intermetallic nanoparticles. By varying the reaction time and temperature, the incorporation of Pb can be controlled, thereby tailoring the phase outcome. Based on the in situ solvothermal syntheses, ex situ autoclave syntheses were performed, resulting in the synthesis of Pb3Pd5 and Pb9Pd13 with a purity above 93%. The catalytic effect of these intermetallic phases towards the hydrogen evolution reaction (HER) is assessed. It is found that Pd, Pb3Pd5, and Pb9Pd13 have comparable stabilities, however, the overpotential increases with increasing amounts of Pb.</p>