Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Endrődi, Balázs

  • Google
  • 2
  • 15
  • 18

University of Szeged

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023One-step electrodeposition of binder-containing Cu nanocube catalyst layers for carbon dioxide reduction7citations
  • 2015Generating photocurrent by nanocomposites based on photosynthetic reaction centre protein11citations

Places of action

Chart of shared publication
Kormányos, Attila
1 / 4 shared
Csík, Gábor András
1 / 1 shared
Balog, Ádám
1 / 2 shared
Janáky, Csaba
1 / 3 shared
Serfőző, Andrea
1 / 1 shared
Nyerki, Emil
1 / 1 shared
Csekő, Richárd
1 / 1 shared
Hernádi, Klára
1 / 5 shared
Forró, László
1 / 10 shared
Tóth, Tünde
1 / 1 shared
Nagy, László
1 / 2 shared
Szabó, Tibor
1 / 2 shared
Visy, Csaba
1 / 1 shared
Magyar, Melinda
1 / 2 shared
Horváth, Endre
1 / 4 shared
Chart of publication period
2023
2015

Co-Authors (by relevance)

  • Kormányos, Attila
  • Csík, Gábor András
  • Balog, Ádám
  • Janáky, Csaba
  • Serfőző, Andrea
  • Nyerki, Emil
  • Csekő, Richárd
  • Hernádi, Klára
  • Forró, László
  • Tóth, Tünde
  • Nagy, László
  • Szabó, Tibor
  • Visy, Csaba
  • Magyar, Melinda
  • Horváth, Endre
OrganizationsLocationPeople

article

One-step electrodeposition of binder-containing Cu nanocube catalyst layers for carbon dioxide reduction

  • Endrődi, Balázs
  • Kormányos, Attila
  • Csík, Gábor András
  • Balog, Ádám
  • Janáky, Csaba
  • Serfőző, Andrea
Abstract

To reach industrially relevant current densities in the electrochemical reduction of carbon dioxide, this process must be performed in continuous-flow electrolyzer cells, applying gas diffusion electrodes. Beyond the chemical composition of the catalyst, its morphology, and the overall structure of the catalyst layer are both decisive in terms of reaction rate and product selectivity. We present an electrodeposition method for preparing coherent copper nanocube catalyst layers on hydrophobic carbon papers, hence forming gas diffusion electrodes with high coverage in a single step. This was enabled by the proper wetting of the carbon paper (controlled by the composition of the electrodeposition solution) and the use of a custom-designed 3D-printed electrolyzer cell, which allowed to deposit copper nanocubes selectively on the microporous side of the carbon paper substrate. Furthermore, a polymeric binder (Capstone ST-110) was successfully incorporated in the catalyst layer during electrodeposition. The high electrode coverage and the binder content together result in an increased ethylene production rate during CO2 reduction, as compared to catalyst layers prepared from simple aqueous solutions.

Topics
  • morphology
  • Carbon
  • chemical composition
  • copper
  • forming
  • electrodeposition