Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pittkowski, Rebecca

  • Google
  • 6
  • 35
  • 25

University of Copenhagen

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Downprobed by in situ WAXS and SAXS2citations
  • 2024Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Down probed by in situ WAXS and SAXS.2citations
  • 2023Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolution3citations
  • 2023The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction11citations
  • 2022Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles7citations
  • 2022High entropy alloy nanoparticle formation at low temperaturescitations

Places of action

Chart of shared publication
Weber, Philipp
2 / 4 shared
Oezaslan, Mehtap
2 / 16 shared
Janssen, Marek
2 / 5 shared
Park, Daesung
2 / 4 shared
Arenz, Matthias
5 / 23 shared
Drnec, Jakub
2 / 15 shared
Martens, Isaac
2 / 9 shared
Quinson, Jonathan
3 / 22 shared
Cipriano, Luis A.
1 / 1 shared
Kristoffersen, Henrik H.
1 / 1 shared
Rossmeisl, Jan
3 / 51 shared
Munhos, Renan L.
1 / 1 shared
Welten, Rahel L.
2 / 4 shared
Du, Jia
1 / 7 shared
Bøjesen, Espen D.
2 / 5 shared
Clausen, Christian M.
2 / 6 shared
Jensen, Kirsten M. Ø.
3 / 19 shared
Stoian, Dragos
2 / 8 shared
Schlegel, Nicolas
2 / 5 shared
Chen, Qinyi
2 / 4 shared
Mathiesen, Jette K.
2 / 6 shared
Van Beek, Wouter
1 / 9 shared
Rosenkranz, Asger W.
1 / 2 shared
Bucher, Jan
2 / 8 shared
Nielsen, Tobias M.
2 / 5 shared
Cooper, Susan R.
1 / 4 shared
Simonsen, Søren Bredmose
1 / 26 shared
Wang, Baiyu
1 / 7 shared
Kinnibrugh, Tiffany L.
1 / 4 shared
Kjær, Emil T. S.
1 / 8 shared
Escudero-Escribano, María
1 / 10 shared
Juelsholt, Mikkel
1 / 10 shared
Kuhn, Luise Theil
1 / 30 shared
Rosenkranz, Asger Wulff
1 / 3 shared
Beek, Wouter Van
1 / 4 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Weber, Philipp
  • Oezaslan, Mehtap
  • Janssen, Marek
  • Park, Daesung
  • Arenz, Matthias
  • Drnec, Jakub
  • Martens, Isaac
  • Quinson, Jonathan
  • Cipriano, Luis A.
  • Kristoffersen, Henrik H.
  • Rossmeisl, Jan
  • Munhos, Renan L.
  • Welten, Rahel L.
  • Du, Jia
  • Bøjesen, Espen D.
  • Clausen, Christian M.
  • Jensen, Kirsten M. Ø.
  • Stoian, Dragos
  • Schlegel, Nicolas
  • Chen, Qinyi
  • Mathiesen, Jette K.
  • Van Beek, Wouter
  • Rosenkranz, Asger W.
  • Bucher, Jan
  • Nielsen, Tobias M.
  • Cooper, Susan R.
  • Simonsen, Søren Bredmose
  • Wang, Baiyu
  • Kinnibrugh, Tiffany L.
  • Kjær, Emil T. S.
  • Escudero-Escribano, María
  • Juelsholt, Mikkel
  • Kuhn, Luise Theil
  • Rosenkranz, Asger Wulff
  • Beek, Wouter Van
OrganizationsLocationPeople

article

Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolution

  • Cipriano, Luis A.
  • Kristoffersen, Henrik H.
  • Rossmeisl, Jan
  • Pittkowski, Rebecca
  • Munhos, Renan L.
  • Arenz, Matthias
Abstract

<p>The dissolution of nanoparticles under corrosive environments represents one of the main issues in electrochemical processes. Here, a model for alloying and protecting nanoparticles from corrosion with an anti-corrosive element (e.g. Au) is proposed based on the hypothesis that under-coordinated atoms are the first atoms to dissolve. The model considers the dissolution of atoms with coordination number ≤6 on A-B nanoparticles with different sizes, shapes, chemical compositions, and exposed crystallographic orientations. The results revealed that the nanoparticle's size and chemical composition play a key role in the dissolution, suggesting that a certain composition of an element with corrosive resistance could be used to protect nanoparticles. DFT simulations were performed to support our model on the dissolution of four types of atoms commonly found on the surface of Au0.20Pd0.80 binary alloys - terrace, edge, kink, and ad atoms. The simulations suggest that the less coordinated ad and kink Pd atoms on Au0.20Pd0.80 alloys are dissolved in a potential window between 0.26-0.56 V, while the rest of the Pd and Au atoms are protected. Furthermore, to show that a corrosion-resistant element can indeed protect nanoparticles, we experimentally investigated the electrochemical dissolution of immobilized Pd, Au0.20Pd0.80, and Au0.40Pd0.60 nanoparticles in a harsh environment. In line with the dissolution model, the experimental results show that an Au molar fraction of the nanoparticle of 0.20, i.e., Au0.20Pd0.80 binary alloy, is a good compromise between maximizing the active surface area (Pd atoms) and corrosion protection by the inactive Au.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • corrosion
  • simulation
  • laser emission spectroscopy
  • chemical composition
  • density functional theory