People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arenz, Matthias
University of Bern
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Downprobed by in situ WAXS and SAXScitations
- 2024Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Down probed by in situ WAXS and SAXS.citations
- 2023The more the better:on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reactioncitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scatteringcitations
- 2023Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolutioncitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathwaycitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathwaycitations
- 2023The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reactioncitations
- 2023Formation of intermetallic PdIn nanoparticles: influence of surfactants on nanoparticle atomic structurecitations
- 2023The more the bettercitations
- 2022Nanocomposite Concept for Electrochemical In Situ Preparation of Pt–Au Alloy Nanoparticles for Formic Acid Oxidationcitations
- 2022Nanocomposite Concept for Electrochemical in Situ Preparation of Pt-Au Alloy Nanoparticles for Formic Acid Oxidationcitations
- 2022High entropy alloy nanoparticle formation at low temperatures
- 2021Operando SAXS study of a Pt/C fuel cell catalyst with an X-ray laboratory sourcecitations
- 2021The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalysts
- 2021Elucidating Pt-Based Nanocomposite Catalysts for the Oxygen Reduction Reaction in Rotating Disk Electrode and Gas Diffusion Electrode Measurementscitations
- 2021Bifunctional Pt-IrO2Catalysts for the Oxygen Evolution and Oxygen Reduction Reactionscitations
- 2021Bayesian optimization of high‐entropy alloy compositions for electrocatalytic oxygen reductioncitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalystscitations
- 2018On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Methodcitations
- 2018Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performances
Places of action
Organizations | Location | People |
---|
article
Formation of intermetallic PdIn nanoparticles: influence of surfactants on nanoparticle atomic structure
Abstract
Bimetallic nanoparticles have been extensively studied as electrocatalysts due to their superior catalytic activity and selectivity compared to their monometallic counterparts. The properties of bimetallic materials depend on the ordering of the metals in the structure, and to tailor-make materials for specific applications, it is important to be able to control the atomic structure of the materials during synthesis. Here, we study the formation of bimetallic palladium indium nanoparticles to understand how the synthesis parameters and additives used influence the atomic structure of the obtained product. Specifically, we investigate a colloidal synthesis, where oleylamine was used as the main solvent while the effect of two surfactants, oleic acid (OA) and trioctylphosphine (TOP) was studied. We found that without TOP included in the synthesis, a Pd-rich intermetallic phase with the Pd<sub>3</sub>In structure initially formed, which transformed into large NPs of the CsCl-structured PdIn phase. When TOP was included, the syntheses yielded both In<sub>2</sub>O<sub>3</sub> and Pd<sub>3</sub>In. <i>In situ</i> X-ray total scattering with Pair Distribution Function analysis was used to study the formation process of PdIn bimetallic NPs. Our results highlight how seemingly subtle changes to material synthesis methods can have a large influence on the product atomic structure.