People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques-Hueso, Jose
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Upconversion 3D printing enhancement via silver sensitization to enable selective metallizationcitations
- 2023Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coatingcitations
- 2022Multimaterial 3D Printing Technique for Electronic Circuitry Using Photopolymer and Selective Metallizationcitations
- 2022Routes towards manufacturing biodegradable electronics with polycaprolactone (PCL) via direct light writing and electroless platingcitations
- 2020Light based synthesis of metallic nanoparticles on surface-modified 3D printed substrates for high performance electronic systemscitations
- 2019A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applicationscitations
- 2019Selective Electroless Copper Deposition by Using Photolithographic Polymer/Ag Nanocompositecitations
- 2019Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructurescitations
- 2019Selective Metallization of 3D Printable Thermoplastic Polyurethanescitations
- 2019Selective metallisation of 3D printable thermoplastic polyurethanescitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018Hybrid Additive Manufacture of Conformal Antennascitations
- 2014Physical performance limitations of luminescent down-conversion layers for photovoltaic applicationscitations
- 2013Enhanced up-conversion for photovoltaics using 2D photonic crystalscitations
- 2012Optical properties of lanthanide dyes for spectral conversion encapsulated in porous silica nanoparticles
- 2012Nanoplasmonics for photovoltaic applicationscitations
- 2012Plasmon dumping in Ag-nanoparticles/polymer composite for optical detection of amines and thiols vaporscitations
Places of action
Organizations | Location | People |
---|
article
Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coating
Abstract
Silver nanoparticle photoreduction synthesis by direct laser writing is a process that enables copper micro-track production on very specific polymers. However, some important 3D printing polymers, such as acrylonitrile butadiene styrene (ABS) and acrylates, do not accept this treatment on their surface. This work presents an approach to produce copper microcircuitry on 3D substrates from these materials by using direct laser writing at low power (32 mW CW diode laser). We show that by coating a thin layer of polyimide (PI) on a 3D-printed geometry, followed by a sequence of chemical treatments and low-power laser-induced photoreduction, copper tracks can be produced using silver as catalyst. The surface chemistry of the layer through the different stages of the process is monitored by FTIR and X-ray photoelectron spectroscopy. The copper tracks are selectively grown on the laser-patterned areas by electroless copper deposition, with conductivity (1.2 ± 0.7) x 107 S/m and a width as small as 28 µm. The patterns can be written on 3D structures and even inside cavities. The technique is demonstrated by integrating different circuits, including a LED circuit on 3D printed photopolymer acrylate and a perovskite solar cell on an ABS 3D curved geometry.