Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schlapp-Hackl, Inge

  • Google
  • 7
  • 31
  • 32

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2025Mechanoenzymatic hydrolysis of cotton to cellulose nanocrystalscitations
  • 2024Carbon Fibers Based on Cellulose–Lignin Hybrid Filaments: Role of Dehydration Catalyst, Temperature, and Tension during Continuous Stabilization and Carbonization3citations
  • 2024Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applications11citations
  • 2024Enhanced mechanical properties of epoxy composites using cellulose micro- and nano-crystals6citations
  • 2024Towards Tailored Dialdehyde Cellulose Derivatives: A Strategy for Tuning the Glass Transition Temperature6citations
  • 2023Droplet Probe for Characterization of Advancing and Receding Contact Angles of Single Fiberscitations
  • 2023Development of cellulose films by means of the Ioncell® technology, as an alternative to commercial films6citations

Places of action

Chart of shared publication
Kontturi, Eero
1 / 28 shared
Kostiainen, Mauri A.
1 / 11 shared
Kaabel, Sandra
1 / 1 shared
Cho, Mijung
1 / 1 shared
Hummel, Michael
4 / 28 shared
Unterweger, Christoph
1 / 4 shared
Robertson, Daria
1 / 2 shared
Fürst, Christian
1 / 2 shared
Abidnejad, Roozbeh
1 / 6 shared
Lipponen, Juha
1 / 4 shared
Fazeli, Mahyar
1 / 4 shared
Islam, Shariful
1 / 8 shared
Baniasadi, Hossein
1 / 21 shared
Tehrani, Ali
1 / 5 shared
Zahran, Abraham
1 / 1 shared
Semaan, Patricia
1 / 1 shared
Mustapha, Samir
1 / 4 shared
Rosenau, Thomas
1 / 13 shared
Ristolainen, Matti
1 / 1 shared
Simon, Jonas
1 / 1 shared
Potthast, Antje
1 / 16 shared
Sapkota, Janak
1 / 17 shared
Zhou, Quan
1 / 6 shared
Vuckovac, Maja
1 / 1 shared
Freitas Vieira, Arthur
1 / 1 shared
Nieminen, Kaarlo
1 / 2 shared
Sixta, Herbert
1 / 22 shared
González Carmona, Eva
1 / 1 shared
Järvinen, Masi
1 / 1 shared
Jääskeläinen, Seppo
1 / 1 shared
Sawada, Daisuke
1 / 7 shared
Chart of publication period
2025
2024
2023

Co-Authors (by relevance)

  • Kontturi, Eero
  • Kostiainen, Mauri A.
  • Kaabel, Sandra
  • Cho, Mijung
  • Hummel, Michael
  • Unterweger, Christoph
  • Robertson, Daria
  • Fürst, Christian
  • Abidnejad, Roozbeh
  • Lipponen, Juha
  • Fazeli, Mahyar
  • Islam, Shariful
  • Baniasadi, Hossein
  • Tehrani, Ali
  • Zahran, Abraham
  • Semaan, Patricia
  • Mustapha, Samir
  • Rosenau, Thomas
  • Ristolainen, Matti
  • Simon, Jonas
  • Potthast, Antje
  • Sapkota, Janak
  • Zhou, Quan
  • Vuckovac, Maja
  • Freitas Vieira, Arthur
  • Nieminen, Kaarlo
  • Sixta, Herbert
  • González Carmona, Eva
  • Järvinen, Masi
  • Jääskeläinen, Seppo
  • Sawada, Daisuke
OrganizationsLocationPeople

article

Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applications

  • Abidnejad, Roozbeh
  • Lipponen, Juha
  • Fazeli, Mahyar
  • Hummel, Michael
  • Islam, Shariful
  • Baniasadi, Hossein
  • Schlapp-Hackl, Inge
Abstract

Cellulose-based fiber-reinforced composites are gaining attention for their eco-friendly attributes and cost-effectiveness. However, their application in high-strength domains remains limited due to the dominance of synthetic and inorganic fibers. This study explores the potential of composites utilizing “Ioncell fiber”, a unique cellulose fiber, in comparison to carbon, cellulosic, and glass fiber composites. Our findings reveal that Ioncell fiber composites exhibit earlier thermal degradation compared to carbon fiber composites according to thermogravimetric analysis (TGA). Analysis via scanning electron microscopy (SEM) highlights exceptional interaction between Ioncell fiber and bio-based epoxy, surpassing other fibers. Additionally, assessment of composite hydrophilicity or hydrophobicity through contact angle measurements reveals distinctive surface characteristics, with Ioncell exhibiting a contact angle of 80°, comparable to carbon fiber's contact angle of 75°, while glass transition results demonstrate Ioncell fiber's transformation closely resembling that of carbon fiber composites. Although Ioncell fiber exhibits lower strength (approximately 50 cN per tex) compared to carbon fiber (222 cN per tex), Ioncell composites demonstrate promising strength levels nearly half that of carbon fiber composites (approximately 230 MPa for Ioncell fiber composite compared to 500 MPa for carbon fiber composite). These results underscore the potential of Ioncell composites as sustainable alternatives to petroleum-based and synthetic fiber composites, thus contributing to a more environmentally sustainable future. ; Peer reviewed

Topics
  • surface
  • Carbon
  • scanning electron microscopy
  • glass
  • glass
  • strength
  • thermogravimetry
  • cellulose
  • fiber-reinforced composite