People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Soeriyadi, Anastasia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Design Considerations for the Bottom Cell in Perovskite / Silicon Tandems: An Industrial Perspective
Abstract
Perovskite / silicon tandems have just broken through the 30% efficiency barrier, which represents a promising step towards high efficiency solar modules. However, the processing used to fabricate high efficiency devices is not compatible with mass production. For this technology to be impactful in the urgent fight against climate change, a shift in mindset is required when designing the silicon bottom cell. In this work, we outline the design requirements for the silicon cell, with a particular focus on the constraints imposed by industrial processing. In doing so, we discuss the type of silicon wafer used, the treatment on the surface, the most appropriate silicon cell architecture and the formation of metal contacts. Additionally, we frame this discussion in the context of multi-TW markets, which impose additional constraints on the processing relating to the sustainability of the materials used. The discussion herein will help to shape the design of future silicon solar cells, so that the LCOE of solar electricity can be driven to new lows.