People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wright, Matthew
Teesside University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Assessing isometric hip strength in young professional soccer players: Does hip-flexion angle matter?
- 2023Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cellscitations
- 2023SiNx and AlOx nanolayers in hole selective passivating contacts for high efficiency silicon solar cellscitations
- 2023Design Considerations for the Bottom Cell in Perovskite / Silicon Tandems: An Industrial Perspectivecitations
- 2022Fitness testing in soccer revisitedcitations
- 2020Re‐evaluation of sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) as food additivescitations
- 2017Controlled Ostwald ripening mediated grain growth for smooth perovskite morphology and enhanced device performancecitations
- 2016Analysis of burn-in photo degradation in low bandgap polymer PTB7 using photothermal deflection spectroscopycitations
- 2016Effect of blend composition on ternary blend organic solar cells using a low band gap polymercitations
- 2015Effect of blend composition on binary organic solar cells using a low band gap polymercitations
- 2014Enhancement of ternary blend organic solar cell efficiency using PTB7 as a sensitizercitations
Places of action
Organizations | Location | People |
---|
article
Design Considerations for the Bottom Cell in Perovskite / Silicon Tandems: An Industrial Perspective
Abstract
Perovskite / silicon tandems have just broken through the 30% efficiency barrier, which represents a promising step towards high efficiency solar modules. However, the processing used to fabricate high efficiency devices is not compatible with mass production. For this technology to be impactful in the urgent fight against climate change, a shift in mindset is required when designing the silicon bottom cell. In this work, we outline the design requirements for the silicon cell, with a particular focus on the constraints imposed by industrial processing. In doing so, we discuss the type of silicon wafer used, the treatment on the surface, the most appropriate silicon cell architecture and the formation of metal contacts. Additionally, we frame this discussion in the context of multi-TW markets, which impose additional constraints on the processing relating to the sustainability of the materials used. The discussion herein will help to shape the design of future silicon solar cells, so that the LCOE of solar electricity can be driven to new lows.