People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castelli, Ivano Eligio
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Exploring the electronic properties and oxygen vacancy formation in SrTiO3 under straincitations
- 2023Structural and electronic properties of double wall MoSTe nanotubescitations
- 2023Transformations of 2D to 3D Double-Perovskite Nanoplates of Cs2AgBiBr6 Compositioncitations
- 2022Rational Catalyst Design for Higher Propene Partial Electro-oxidation Activity by Alloying Pd with Aucitations
- 2022Bandgap prediction of metal halide perovskites using regression machine learning modelscitations
- 2021Band structure of MoSTe Janus nanotubescitations
- 2021Band structure of MoSTe Janus nanotubescitations
- 2020Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural networkcitations
- 2019High-Entropy Alloys as a Discovery Platform for Electrocatalysiscitations
- 2019Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-δ: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stabilitycitations
- 2018Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δcitations
- 2018Computational Screening of Light-absorbing Materials for Photoelectrochemical Water Splittingcitations
- 2017Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Filmscitations
- 2017Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba 2 In 2 O 5 Thin Filmscitations
- 2015Band-gap engineering of functional perovskites through quantum confinement and tunnelingcitations
- 2013Computational Screening of Materials for Water Splitting Applications
- 2013Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splittingcitations
- 2013Stability and bandgaps of layered perovskites for one- and two-photon water splittingcitations
- 2012Computational screening of perovskite metal oxides for optimal solar light capturecitations
Places of action
Organizations | Location | People |
---|
article
Structural and electronic properties of double wall MoSTe nanotubes
Abstract
Janus nanotubes originating from rolling up asymmetric dichalcogenide monolayers have shown unique properties compared to their 2D and 3D counterparts. Most of the work on Janus nanotubes is focused on single-wall (SW) tubes. In this work, we have investigated the structural and electronic properties of double wall (DW) MoSTe nanotubes using Density Functional Theory (DFT). The most stable DW, corresponding to a minimum of the strain energy, is formed by combining 16- and 24-unit cells for the inner and outer tubes. This DW configuration shows a slightly smaller inner diameter than the SW tube, which was formed by 18-unit cells due to the intra-wall interaction. The investigation of the band gaps of 2D structures under strain and SW/DW nanotubes revealed that the curvature of the nanotube and the strain induced when forming the tube are the two primary factors enabling the band gap tuning. Moreover, we found that the band gaps of the DW MoSTe tubes close, compared to the SWs, generating tubes with a metallic-like behavior. This property makes DW MoSTe nanotubes promising for electrochemical applications.