People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jagadamma, Lethy Krishnan
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Metal oxide vs organic semiconductor charge extraction layers for halide perovskite indoor photovoltaics
- 2023Manipulation of structure and optoelectronic properties through bromine inclusion in a layered lead bromide perovskitecitations
- 2023Chlorine retention enables the indoor light harvesting of triple halide wide bandgap perovskitescitations
- 2023Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the futurecitations
- 2023Status report on emerging photovoltaicscitations
- 2022Crystalline grain engineered CsPbIBr2 films for indoor photovoltaicscitations
- 2022Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cellscitations
- 2022Solution-processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cellscitations
- 2022Hysteresis in hybrid perovskite indoor photovoltaicscitations
- 2021Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communicationscitations
- 2021New thiophene-based conjugated macrocycles for optoelectronic applicationscitations
- 2021New thiophene-based conjugated macrocycles for optoelectronic applicationscitations
- 2019Efficient indoor pin hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layerscitations
- 2019Interface limited hole extraction from methylammonium lead iodide filmscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusterscitations
- 2017Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applicationscitations
- 2016Solution-processable MoO x nanocrystals enable highly efficient reflective and semitransparent polymer solar cellscitations
- 2016Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cellscitations
- 2015Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layercitations
- 2015Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layercitations
Places of action
Organizations | Location | People |
---|
article
Lead-free perovskite-inspired semiconductors for indoor light-harvesting - the present and the future
Abstract
<p>Are lead-free perovskite-inspired materials (PIMs) the wise choice for efficient yet sustainable indoor light harvesting? This feature article outlines how wide-bandgap PIMs can provide a positive answer to this compelling question. The wide band gaps can hinder sunlight absorption, in turn limiting the solar cell performance. However, PIMs based on group VA of the periodic table can theoretically lead to an outstanding indoor power conversion efficiency up to 60% when their band gap is ∼2 eV. Yet, the research on PIM-based indoor photovoltaics (IPVs) is still in an early stage with highest indoor device efficiencies up to 10%. This article reviews the recent advancements on PIMs for IPVs and identifies the main limiting factors of device performance, thus suggesting effective strategies to address them. We emphasize the poor operational stability of the IPV devices of PIMs being the key bottleneck for the vast adoption of this technology. We believe that this report can provide a solid scaffolding for further researching this fascinating class of materials, ultimately supporting our vision that, upon extensive advancement of the stability and efficiency, PIMs with wide bandgap will become a contender for the next-generation absorbers for sustainable indoor light harvesting.</p>