People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tekelenburg, Eelco K.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Cation Influence on Hot-Carrier Relaxation in Tin Triiodide Perovskite Thin Filmscitations
- 2024Quasi-2D Lead–Tin Perovskite Memory Devices Fabricated by Blade Coatingcitations
- 2024Mechanism of Hot-Carrier Photoluminescence in Sn-Based Perovskitescitations
- 2024Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dotscitations
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Impact of two diammonium cations on the structure and photophysics of layered Sn-based perovskitescitations
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in ⟨100»Two-Dimensional Perovskites:Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in â ¨100»Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes
- 2020Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskitescitations
Places of action
Organizations | Location | People |
---|
article
Impact of two diammonium cations on the structure and photophysics of layered Sn-based perovskites
Abstract
Layered metal-halide perovskites have shown great promise for applications in optoelectronic devices, where a large number of suitable organic cations give the opportunity to tune their structural and optical properties. However, especially for Sn-based perovskites, a detailed understanding of the impact of the cation on the crystalline structure is still missing. By employing two cations, 2,2′-oxybis(ethylammonium) (OBE) and 2,2′-(ethylenedioxy)bis(ethylammonium) (EDBE), we obtain a planar 〈100〉 and a corrugated 〈110〉-oriented perovskite, respectively, where the hydrogen bonding between the EDBE cations stabilises the corrugated structure. OBESnI 4 exhibits a relatively narrow band gap and photoluminescence bands compared to EDBESnI 4 . In-depth analysis shows that the markedly different optical properties of the two compounds have an extrinsic origin. Interestingly, thin films of OBESnI 4 can be obtained both in black and red colours. This effect is attributed to a second crystalline phase that can be obtained by processing the thin films at 100 °C. Our work highlights that the design of the crystal structure as obtained by ligand chemistry can be used to obtain the desired optical properties, whereas thin film engineering can result in multiple crystalline phases unique to Sn-based perovskites.