People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prodromakis, Themistoklis
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Solid polymer electrolytes with enhanced electrochemical stability for high-capacity aluminum batteriescitations
- 2024Forming-free and non-linear resistive switching in bilayer HfOx/TaOx memory devices by interface-induced internal resistancecitations
- 2024Forming-free and non-linear resistive switching in bilayer HfO x /TaO x memory devices by interface-induced internal resistancecitations
- 2022Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectorscitations
- 2022Nanocellulose-based flexible electrodes for safe and sustainable energy storage
- 2020Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applicationscitations
- 2019An electrical characterisation methodology for identifying the switching mechanism in TiO2 memristive stackscitations
- 2019A digital in-analogue out logic gate based on metal-oxide memristor devices
- 2018Processing big-data with memristive technologiescitations
- 2018A comprehensive technology agnostic RRAM characterisation protocol
- 2018Interface barriers at Metal – TiO2 contacts
- 2018Electrothermal deterioration factors in gold planar inductors designed for microscale bio-applicationscitations
- 2017Impact of ultra-thin Al2O3–y layers on TiO2–x ReRAM switching characteristicscitations
- 2017Impact of ultra-thin Al 2 O 3–y layers on TiO 2–x ReRAM switching characteristicscitations
- 2016Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopycitations
- 2016X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devicescitations
- 2016An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margincitations
- 2016Engineering the switching dynamics of TiOx-based RRAM with Al dopingcitations
- 2016Al-doping engineered electroforming and switching dynamics of TiOx ReRAM devices
- 2016Role and optimization of the active oxide layer in TiO2-based RRAMcitations
- 2016Engineering PDMS topography on microgrooved Parylene C
- 2009Engineering the Maxwell-Wagner polarization effectcitations
- 2009Application of gold nanodots for Maxwell-Wagner loss reduction
Places of action
Organizations | Location | People |
---|
article
Low-power supralinear photocurrent generation via excited state fusion in single-component nanostructured organic photodetectors
Abstract
The integration of triplet–triplet annihilation (TTA) components as electrically and optically active elements in vertically-configured photoactive device architectures is a challenging task to achieve. Herein we present a simple methodology for incorporating a photon absorbing layer of the (2,3,7,8,12,13,17,18-octaethyl-porphyrinato)platinum(II) (PtOEP) metallorganic complex, as a self-TTA annihilator medium in a sandwich-like photodiode device structure. At low power illumination, the PtOEP photodiode exhibits photocurrent generation via the fusion of optically induced PtOEP excited states and it develops an open-circuit voltage (VOC) as high as 1.15 V. The structural and spectroscopic characterization of the nanostructured PtOEP photoactive layer in combination with electronic structure calculations identify PtOEP dimer species as the annihilating excited state responsible for the formation of charges. The participation of the fusion process in the mechanism of charge photogeneration manifests in the supralinear dependence of the short-circuit current density (JSC) on the incoming photoexcitation intensity, both when incoherent and coherent light are used for illuminating the PtOEP diodes. The photoresponse of the PtOEP device allows for highly selective and sensitive photodetection within the 500–560 nm narrow spectral range. At short-circuit conditions a power-law is observed in the dependence of the device responsivity on fluence. The observed response of the PtOEP photodiodes reveals a hitherto neglected mechanism of photocurrent generation in single-component organic electronic devices that is facilitated by TTA reactions. These findings pave the way towards the fabrication of next-generation electro-optical switches, ultrasensitive organic photodetectors, and TTA-sensitized solar cells with vertically-configured device structure.