Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Yuso, Mvm

  • Google
  • 1
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Investigation of the role of pH and the stoichiometry of the N-dopant in the luminescence, composition and synthesis yield of carbon dots8citations

Places of action

Chart of shared publication
Da Silva, Jcge
1 / 6 shared
Da Silva, Lp
1 / 4 shared
Crista, D.
1 / 1 shared
Algarra, M.
1 / 18 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Da Silva, Jcge
  • Da Silva, Lp
  • Crista, D.
  • Algarra, M.
OrganizationsLocationPeople

article

Investigation of the role of pH and the stoichiometry of the N-dopant in the luminescence, composition and synthesis yield of carbon dots

  • Da Silva, Jcge
  • De Yuso, Mvm
  • Da Silva, Lp
  • Crista, D.
  • Algarra, M.
Abstract

Carbon dots (CDs) are carbon-based nanoparticles with very attractive luminescence features, which simplicity and flexibility of their fabrication can lead to an endless number of CDs with distinct properties and applications. High fluorescence quantum yields (QY(FL)) are generally a necessary feature for various applications of CDs. One commonly employed strategy to improve the fluorescence properties of CDs is heteroatom-doping using precursors containing desired heteroatoms (with focus on N-doping). In this work, we report the synthesis and systematic investigation of an array of N-doped CDs, obtained from the dry heating of solid mixtures of glucose and urea in different molar ratios with two main objectives: to study the role of stoichiometry in the optical properties and composition of CDs and to investigate the formation of possible alkaline-responsive nanoparticles and the potential of this procedure for obtaining CDs with higher synthesis yields. We have characterized the optical properties of this diverse array of glucose and urea-based CDs using both UV-Vis and fluorescence spectroscopies. In addition, we have also examined the CDs by using high-resolution transmission electron microscopy (HR-TEM) and X-Ray photoelectron (XPS) spectroscopy, as well as by assessing the thermal stability of the nanoparticles. We have found that this fabrication process generates two types of CDs, one readily soluble in water and other only soluble at basic pH. The latter was characterized by higher synthesis yields, and lower QY(FL) and thermal stability, when compared with those of the former. Furthermore, the stoichiometry of the N-dopant does not appear to be correlated with the QY(FL) of the obtained CDs. This study provides novel information that should be useful for the future rational development of CDs with higher QY(FL) and synthesis yields.

Topics
  • nanoparticle
  • impedance spectroscopy
  • Carbon
  • x-ray photoelectron spectroscopy
  • transmission electron microscopy
  • luminescence