Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Subakti, Subakti

  • Google
  • 1
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Nano-scale new Heusler compounds NiRh2Sb and CuRh2Sb6citations

Places of action

Chart of shared publication
Kaiser, Felix
1 / 2 shared
Schnelle, Walter
1 / 20 shared
Wang, Yiran
1 / 1 shared
Doert, Thomas
1 / 41 shared
Hantusch, Martin
1 / 12 shared
Ruck, Michael
1 / 74 shared
Fecher, Gerhard H.
1 / 11 shared
Lubk, Axel
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kaiser, Felix
  • Schnelle, Walter
  • Wang, Yiran
  • Doert, Thomas
  • Hantusch, Martin
  • Ruck, Michael
  • Fecher, Gerhard H.
  • Lubk, Axel
OrganizationsLocationPeople

article

Nano-scale new Heusler compounds NiRh2Sb and CuRh2Sb

  • Kaiser, Felix
  • Subakti, Subakti
  • Schnelle, Walter
  • Wang, Yiran
  • Doert, Thomas
  • Hantusch, Martin
  • Ruck, Michael
  • Fecher, Gerhard H.
  • Lubk, Axel
Abstract

<p>Two Heusler compounds NiRh<sub>2</sub>Sb and CuRh<sub>2</sub>Sb were synthesized for the first time and their crystal structures were determined by combined X-ray diffraction and high-resolution electron microscopy. Two synthesis routes were applied: a one-pot polyol reduction of metal cations at 280-290 °C under microwave radiation yielded nanocrystalline particles of 3-6 nm, whereas intergrown microcrystalline samples were obtained by conventional high-temperature synthesis at 700 °C starting from the elements. NiRh<sub>2</sub>Sb is an orthorhombic Heusler compound that crystallizes in space group Cmcm with lattice parameters a = 6.9188(1) Å, b = 5.7917(1) Å and c = 5.7374(1) Å. CuRh<sub>2</sub>Sb is dimorphic; depending on the synthesis conditions, it either adopts the cubic space group Fm3̄m with a lattice parameter of a = 6.1235(1) Å, or the tetragonal space group I4/mmm with lattice parameters a = 4.1859(1) Å and c = 6.6375(1) Å. The transition between the cubic and tetragonal structures of CuRh<sub>2</sub>Sb is attributed to a reversible band Jahn-Teller distortion as suggested by density functional theory-based calculations. Electrical resistivities evidence metallic behavior for both compounds in accordance with the computed band structures and the density-of-states. Both compounds are Pauli paramagnetic and show no magnetic ordering between room temperature and 2 K. The electrocatalytic performances of the nano-scale intermetallics were tested with the electrolysis of water, and both were found to greatly reduce the overpotential of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with a large electrochemically active surface area.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • compound
  • x-ray diffraction
  • theory
  • Oxygen
  • Hydrogen
  • density functional theory
  • electron microscopy
  • intermetallic
  • band structure
  • space group