People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spencer, Ben Felix
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Ultimate charge transport regimes in doping-controlled graphene laminates: phonon-assisted processes revealed by the linear magnetoresistancecitations
- 2023Elucidating the mechanism of self healing in hydro gel lead halide perovskite composites for use in photovoltaic devices
- 2023Environment effects upon electrodeposition of thin film copper oxide nanomaterialscitations
- 2022Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopycitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2021Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineeringcitations
- 2021Inelastic background modelling applied to Hard X-ray Photoelectron Spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurementscitations
- 2020Using soft polymer template engineering of mesoporous TiO2 scaffolds to increase perovskite grain size and solar cell efficiencycitations
- 2020PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA compositescitations
- 2020Quantitative Electro-Reduction of CO2 to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworkscitations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2019Iodine adsorption in a redox-active metal-organic frameworkcitations
- 2019Accessing γ-Ga2S3 by solventless thermolysis of gallium xanthates: A low temperature limit for crystalline products?citations
- 2018Ambient-Air-Stable Inorganic Cs2SnI6 Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Depositioncitations
Places of action
Organizations | Location | People |
---|
article
Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopy
Abstract
In recent times, mixed-cation metal halide perovskites have shown promising photovoltaic performance, and the long-term stability of these metal halide perovskites has also been considerably improved by incorporating additives into the perovskite precursor. Here, the role of ionic liquid additives in improving the stability of perovskite is investigated by in-situ surface sensitive studies. A small amount (0.3mol %) of 1-octyl-3-methylimidazolium chloride ionic liquid (IL) is incorporated into FA0.9Cs0.1PbI3 (FACs) (where FA represents the formamidinium cation, CH=(NH2)2 +). The thermal- and moisture-induced decomposition of FACs and IL-FACs is investigated using near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). A comparative study of the pristine and IL-incorporated FACs compositions shows that the IL additive prevents the out-diffusion of organic ion (FA+) from the lattice for temperatures up to 100 °C under 9 mbar water vapour and up to 150 °C under UHV conditions. Both compositions exhibit better stability under 9 mbar water vapour (equivalent to ~30% relative humidity) compared with conventional methylammonium lead iodide (MAPbI3). The champion device fabricated with IL additive exhibits an improved power conversion efficiency (PCE) of 16% compared with the 13% PCE of the pristine FACs sample. Overall, the results suggest that the IL additive acts to improve the device performance as well as the stability of perovskites under thermal annealing in dry environments, but that a careful choice of IL will be necessary for full passivation in wet environments.