People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khossossi, Nabil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023New insights into hydrogen trapping and embrittlement in high strength aluminum alloyscitations
- 2023Computational insights into the superior efficiency of Cs2AgGa(Cl,Br)6 double halide perovskite solar cellscitations
- 2022Stability of and conduction in single-walled Si2BN nanotubescitations
- 2022Promise and reality of organic electrodes from materials design and charge storage perspectivecitations
- 2022Probing the electronic, optical and transport properties of halide double perovskites Rb2InSb(Cl,Br)6 for solar cells and thermoelectric applicationscitations
- 20222D Janus and non-Janus diamanes with an in-plane negative Poisson's ratio for energy applicationscitations
- 2021Cs2InGaX6 (X=Cl, Br, or I)citations
- 2021Thermodynamics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteriescitations
- 2020Carbides-anti-perovskites Mn3(Sn, Zn)Ccitations
- 2020Rational Design of 2D h-BAs Monolayer as Advanced Sulfur Host for High Energy Density Li-S Batteriescitations
- 2020Rational Design of 2D h-BAs Monolayer as Advanced Sulfur Host for High Energy Density Li-S Batteriescitations
Places of action
Organizations | Location | People |
---|
document
Promise and reality of organic electrodes from materials design and charge storage perspective
Abstract
Organic electrode materials are becoming increasingly important as they reduce the C-footprint as well as the production cost of currently used and studied rechargeable batteries. With increasing demand for high-energy-density devices, over the past few decades, various innovative new materials based on the fundamental structure-property relationships and molecular design have been explored to enable high-capacity next-generation battery chemistries. One critical dimension that catalyzes this study is the building up of an in-depth understanding of the structure-property relationship and mechanism of alkali ion batteries. In this review, we present a critical overview of the progress in the technical feasibility of organic battery electrodes for use in long-term and large-scale electrical energy-storage devices based on the materials designing, working mechanisms, performance, and battery safety. Specifically, we discuss the underlying alkali ion storage mechanisms in specific organic batteries, which could provide the designing requirements to overcome the limitations of organic batteries. We also discuss the promising future research directions in the field of alkali ion organic batteries, especially multivalent organic batteries along with monovalent alkali ion organic batteries.