People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wharton, Julian A.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Solid polymer electrolytes with enhanced electrochemical stability for high-capacity aluminum batteriescitations
- 2023Heat treatment effects on the corrosion performance of wire arc additively manufactured ER316LSi stainless steelcitations
- 2023Surface properties influence marine biofilm rheology, with implications for ship dragcitations
- 2018Explicit fracture modelling of cemented tungsten carbide (WC-Co) at the mesoscalecitations
- 2016Electrochemical detection of cupric ions with boron-doped diamond electrode for marine corrosion monitoringcitations
- 2015Electrochemical detection of cupric ions with boron-doped diamond electrode for corrosion monitoring
- 2013Pseudotumour formation due to tribocorrosion at the taper interface of large diameter metal on polymer modular total hip replacementscitations
- 2013A review of the manufacture, mechanical properties and potential applications of auxetic foamscitations
- 2013Characterisation of crevice and pit solution chemistries using capillary electrophoresis with contactless conductivity detectorcitations
- 2012Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materialscitations
- 2012A novel microfluidic approach for the assessment of antifouling technologies
- 2010Interpretation of electrochemical measurements made during micro-scale abrasion-corrosioncitations
- 2010Designing biomimetic antifouling surfacescitations
- 2010Electrodeposition and tribological characterisation of nickel nanocomposite coatings reinforced with nanotubular titanatescitations
- 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutionscitations
- 2009Microabrasion-corrosion of cast CoCrMo alloy in simulated body fluidscitations
- 2008Tribocorrosion damage of a Jethete M152 type stainless steelcitations
- 2008The effects of proteins and pH on tribo-corrosion performance of cast CoCrMo: a combined electrochemical and tribological studycitations
- 2007Exposure effects of alkaline drilling fluid on the microscale abrasion–corrosion of WC-based hardmetalscitations
- 2007Synergistic effects of micro-abrasion–corrosion of UNS S30403, S31603 and S32760 stainless steelscitations
- 2005Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatingscitations
- 2005The corrosion of nickel–aluminium bronze in seawater [in A Century of Tafel’s Equation: A Commemorative Issue of Corrosion Science]citations
- 2005Flow corrosion behaviour of austenitic stainless steels UNS S30403 and UNS S31603
- 2005Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environmentscitations
- 2003Erosion and erosion-corrosion performance of cast and thermally sprayed nickel-aluminium bronze
- 2002Investigation of erosion-corrosion processes using electrochemical noise measurementscitations
- 2000Crevice corrosion studies using electrochemical noise measurements and a scanning electrode techniquecitations
Places of action
Organizations | Location | People |
---|
article
Surface properties influence marine biofilm rheology, with implications for ship drag
Abstract
Marine biofilms on ship hulls increase frictional drag, which has economic and environmental consequences. It is hypothesised that biofilm mechanics, such as viscoelasticity, play a critical role in biofilm-associated drag, yet is a poorly studied area. The current study aimed to rheologically characterise ship-relevant marine biofilms. To combat marine biofilms on ship hulls, fouling-control coatings are often applied; therefore, the effect of different surfaces on marine biofilm mechanics was also investigated. Three surfaces were tested: a non-biocidal, chemically inert foul-release coating (FRC), an inert primer (ACP) and inert PVC. Physical properties of biofilms were explored using Optical Coherence Tomography (OCT) and a parallel-plate rheometer was used for rheological testing. Image analysis revealed differences in the thickness, roughness, and percent coverage between the different biofilms. Rheological testing showed that marine biofilms, grown on FRC and ACP acted as viscoelastic materials, although there were differences. FRC biofilms had a lower shear modulus, a higher viscosity, and a higher yield stress than the ACP biofilms, suggesting that the FRC biofilms were more readily deformable but potentially more robust. The results confirmed that surface treatment influences the structural and mechanical properties of ship-relevant marine biofilms, which could have implications for drag. A better understanding of how different surface treatments affect marine biofilm rheology is required to improve our knowledge on biofilm fluid-structure interactions and to better inform the coating industry of strategies to control biofilm formation and reduce drag.