People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mørch, Mathias I.
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024Aligned Permanent Magnet Made in Seconds:An In Situ Diffraction Studycitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2022Exploiting different morphologies of non-ferromagnetic interacting precursor’s for preparation of hexaferrite magnetscitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2021‘Need for Speed’: Sub-second in situ diffraction to unravel rapid sintering & texture evolution in ferrite magnets
- 2019Novel fast heating furnaces for in situ powder neutron diffraction
- 2019Structure and magnetic properties of W-type hexaferritescitations
- 2019Novel in situ powder neutron diffraction setups – The creation of a modern magnetic compound
Places of action
Organizations | Location | People |
---|
article
Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnets
Abstract
Development of lanthanide-free permanent magnets has been the focus of intensive research for the past decade. Magnetic ferrites are viable alternatives but are limited by their magnetic characteristics. Exchange-spring nanocomposite magnets composed of interacting magnetic hard and soft phases are predicted to exhibit superior performance. In this study, we investigated the effects of nanoscale mixing by two techniques (physical powder blending and chemical nanocoating) on nanocomposites of SrFe 12 O 19 (hard) and Zn 0.2 Co 0.8 Fe 2 O 4 (soft). Detailed atomic-/nano-scale structural characterizations of these nanocomposites were performed by combining neutron and X-ray powder diffraction analysis with transmission electron microscopy. Macroscopic magnetic properties and exchange-coupling (recoil magnetization) were investigated by vibrating sample magnetometry. The powder-blend nanocomposite lacked exchange coupling while the chemically prepared nanocomposite showed exchange-spring behavior, albeit with reduced magnetic performance. Insights gained from the detailed structural characterization were employed to understand and explain the macroscopic magnetic performance. We also present a hitherto unreported degradation of the hard phase during the chemical processing. Our findings highlight potential red-flags for future investigations on exchange-spring nanocomposites where safeguards to protect the constituent phases from degradation during synthesis/processing should be considered and employed to maximize the magnetic performance.