People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Howdle, Steven M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A facile one step route that introduces functionality to polymer powders for laser sinteringcitations
- 2023Modification of linear polyethylenimine with supercritical CO2 : from fluorescent materials to covalent cross-linkscitations
- 2022Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2citations
- 2021Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplasticscitations
- 2020Starch/Poly(glycerol-adipate) Nanocomposites: A Novel Oral Drug Delivery Devicecitations
- 2020Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxidecitations
- 2019Hydrocarbon based stabilisers for the synthesis of cross-linked poly(2-hydroxyethyl methacrylate) particles in supercritical carbon dioxidecitations
- 2019Monitoring morphology evolution within block copolymer microparticles during dispersion polymerisation in supercritical carbon dioxidecitations
- 2014A high pressure cell for supercritical CO2 on-line chemical reactions studied with x-ray techniquescitations
- 2013Porous copolymers of ε-caprolactone as scaffolds for tissue engineeringcitations
- 2013Towards superhydrophobic coatings made by non-fluorinated polymers sprayed from a supercritical solutioncitations
- 2009Continuous flow supercritical chemical fluid deposition of optoelectronic quality CdScitations
- 2009Electrodeposition of metals from supercritical fluidscitations
- 2009Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffoldscitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fiber substratescitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fibre substratescitations
Places of action
Organizations | Location | People |
---|
article
Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2
Abstract
Silver nanoparticles (AgNP) are widely exploited for their effective antimicrobial activity against a range of pathogens. Their high efficacy in this regard has seen the global demand for AgNP in consumer products steadily increase in recent years, necessitating research into novel low environmental impact synthesis approaches. Here we present a new synthetic methodology to produce polymer-AgNP composite microparticles using supercritical carbon dioxide (scCO2) and avoiding use of any petrochemically derived solvents. Poly(methyl methacrylate)-poly(4-vinylpyridine) (PMMA-b-P4VP) block copolymers were synthesised via RAFT-mediated dispersion polymerisation in scCO2, with in situ thermal degradation of various amounts of a CO2-soluble silver complex. Selective interaction of the silver with the pyridinyl moieties of the block copolymer allowed the formation of AgNP, dispersed within the block copolymer microparticles, leading to homogeneous composites. The by-products of the reaction were also removed by extracting with a flow of CO2 to yield a clean dry product in a single process. The composites were found to be non-cytotoxic and proved to have good antimicrobial activity against two bacterial strains. Though no significant activity was seen for at least the first 24 hours, inhibition of bacterial growth afterwards proved to be extremely persistent, with inhibition observed even after 15 days. Finally, the microparticulate nature of the synthesised composites was exploited and tested for compatibility in the Laser Sintering (LS) 3D printing process. Composite microparticles were fused to produce solid objects, without aggregation of the AgNP. With further optimisation, these composites could prove to be an incredibly versatile ‘ink’ that may be used within additive manufacturing and 3D printing to rapidly produce bespoke medical devices with inherent antimicrobial activity.