Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xu, Xinya

  • Google
  • 6
  • 23
  • 41

Northumbria University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023A structural, optical and electrical comparison between physical vapour deposition and slot-die deposition of Al:ZnO (AZO)citations
  • 2022Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Films8citations
  • 2022Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.8citations
  • 2022Recovery mechanisms in aged kesterite solar cells11citations
  • 2020Innovative fabrication of low-cost kesterite solar cells for distributed energy applicationscitations
  • 2019Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substrate14citations

Places of action

Chart of shared publication
Matheson, Ewan D.
1 / 1 shared
Zoppi, Guillaume
6 / 36 shared
Qu, Yongtao
6 / 11 shared
Barrioz, Vincent
6 / 26 shared
Beattie, Neil
5 / 18 shared
Naylor, Matthew
2 / 2 shared
Sheppard, Alice
2 / 3 shared
Laverock, Jude
2 / 13 shared
Ford, Bethan
4 / 4 shared
Campbell, Stephen
4 / 9 shared
Fox, Neil A.
2 / 14 shared
Jones, Michael
2 / 5 shared
Tiwari, Devendra
2 / 29 shared
Maiello, Pietro
3 / 5 shared
Fermin, David J.
2 / 14 shared
Jones, Michael D. K.
1 / 1 shared
Beattie, Neil S.
1 / 1 shared
Naylor, Matthew C.
1 / 2 shared
Duchamp, Martial
2 / 14 shared
Nguyen, Linh Lan
1 / 1 shared
Mirsaidov, Utkur
1 / 2 shared
Campbell, Stephan
1 / 1 shared
Garrec, Mathieu Le
1 / 1 shared
Chart of publication period
2023
2022
2020
2019

Co-Authors (by relevance)

  • Matheson, Ewan D.
  • Zoppi, Guillaume
  • Qu, Yongtao
  • Barrioz, Vincent
  • Beattie, Neil
  • Naylor, Matthew
  • Sheppard, Alice
  • Laverock, Jude
  • Ford, Bethan
  • Campbell, Stephen
  • Fox, Neil A.
  • Jones, Michael
  • Tiwari, Devendra
  • Maiello, Pietro
  • Fermin, David J.
  • Jones, Michael D. K.
  • Beattie, Neil S.
  • Naylor, Matthew C.
  • Duchamp, Martial
  • Nguyen, Linh Lan
  • Mirsaidov, Utkur
  • Campbell, Stephan
  • Garrec, Mathieu Le
OrganizationsLocationPeople

article

Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Films

  • Zoppi, Guillaume
  • Naylor, Matthew
  • Qu, Yongtao
  • Sheppard, Alice
  • Laverock, Jude
  • Ford, Bethan
  • Campbell, Stephen
  • Fox, Neil A.
  • Jones, Michael
  • Xu, Xinya
  • Barrioz, Vincent
  • Tiwari, Devendra
  • Maiello, Pietro
  • Fermin, David J.
  • Beattie, Neil
Abstract

Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics however the open-circuit voltage (VOC) deficit of CZTSSe prevents device performance to exceed 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is doping and alloying of the material to suppress certain defects and improve crystallization such as germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation we demonstrate structural changes with negligible change in energy bandgap but substantial increase in crystallinity and grain morphology which is associated to a Ge-Se growth mechanism and gains in both VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape which we attribute to a reduction in segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.

Topics
  • Deposition
  • impedance spectroscopy
  • morphology
  • surface
  • grain
  • phase
  • annealing
  • crystallization
  • crystallinity
  • surface energy
  • microscopy
  • Germanium
  • point defect