People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barrioz, Vincent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023A structural, optical and electrical comparison between physical vapour deposition and slot-die deposition of Al:ZnO (AZO)
- 2022Elimination of the carbon-rich layer in Cu2ZnSn(S, Se)4 absorbers prepared from nanoparticle inkscitations
- 2022Routes to Increase Performance for Antimony Selenide Solar Cells using Inorganic Hole Transport Layerscitations
- 2022Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Filmscitations
- 2022Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporation
- 2022Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.citations
- 2022Recovery mechanisms in aged kesterite solar cellscitations
- 2020Innovative fabrication of low-cost kesterite solar cells for distributed energy applications
- 2019Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substratecitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrayscitations
- 2017Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVDcitations
- 2017A combined Na and Cl treatment to promote grain growth in MOCVD grown CdTe thin filmscitations
- 2016Sodium Induced Microstructural Changes in MOCVD-Grown CdTe Thin Films
- 2015MOCVD of SnSx thin films for solar cell application
- 2015Influence of CdCl2 activation treatment on ultra-thin Cd1−xZnxS/CdTe solar cellscitations
- 2014Investigation into ultrathin CdTe solar cell Voc using SCAPS modellingcitations
- 2014Investigation into ultrathin CdTe solar cellVocusing SCAPS modellingcitations
- 2014Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applicationscitations
- 2013Developing Monolithically Integrated CdTe Devices Deposited by AP-MOCVD
- 2013Numerical simulation of the deposition process and the epitaxial growth of cadmium telluride thin film in a MOCVD reactorcitations
- 2011Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2010A feasibility study towards ultra-thin PV solar cell devices by MOCDV based on a p-i-n structure incorporating pyrite
- 2009Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2008The application of a statistical methodology to investigate deposition parameters in CdTe/CdS solar cells grown by MOCVDcitations
Places of action
Organizations | Location | People |
---|
article
Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Films
Abstract
Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics however the open-circuit voltage (VOC) deficit of CZTSSe prevents device performance to exceed 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is doping and alloying of the material to suppress certain defects and improve crystallization such as germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation we demonstrate structural changes with negligible change in energy bandgap but substantial increase in crystallinity and grain morphology which is associated to a Ge-Se growth mechanism and gains in both VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape which we attribute to a reduction in segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.