People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hummelen, Jan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022A method for identifying the cause of inefficient salt-doping in organic semiconductorscitations
- 2022Investigating the dielectric properties and exciton diffusion in C70 derivativescitations
- 2021Molecular Doping Directed by a Neutral Radicalcitations
- 2020Reaching a Double-Digit Dielectric Constant with Fullerene Derivativescitations
- 2020Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier-Carrier Interactionscitations
- 2020N-type organic thermoelectricscitations
- 2017N-Type Organic Thermoelectricscitations
- 2016Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Dopingcitations
- 2015Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubilitycitations
- 2014Strategy for Enhancing the Electric Permittivity of Organic Semiconductors
Places of action
Organizations | Location | People |
---|
article
A method for identifying the cause of inefficient salt-doping in organic semiconductors
Abstract
<p>Doping to enhance the electrical conductivity of organic semiconductors is not without its challenges: The efficacy of this process depends on many factors and it is not always clear how to remedy poor doping. In the case of doping with salts, one of the possible causes of poor doping is a limited yield of integer charge transfer resulting in the presence of both cations and anions in the film. The charge of such ions can severely limit the electrical conductivity, but their presence is not easily determined. Here we introduce a set of simple conductivity measurements to determine whether poor doping in the case where the dopant is a salt is due to limited integer charge transfer. By tracking how the conductivity changes over time when applying a bias voltage for an extended amount of time we can pinpoint whether unwanted ions are present in the film. Firstly, we introduce the principle of this approach by performing numerical simulations that include the movement of ions. We show that the conductivity can increase or decrease depending on the type of ions present in the film. Next, we show that the movement of these dopant ions causes a build-up of space-charge, which makes the current-voltage characteristic non-linear. Next, we illustrate how this approach may be used in practice by doping a fullerene derivative with a series of organic salts. We thus provide a tool to make the optimization of doping more rational.</p>