People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Niittymäki, Minna
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2024Characterization of Isotactic-Polypropylene-Based Compounds for HVDC Cable Insulationcitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitorscitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors: morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors : morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation : Are silica clusters beneficial for space charge accumulation?citations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation: Are silica clusters beneficial for space charge accumulation?citations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation:Are silica clusters beneficial for space charge accumulation?citations
- 2021Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectricscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulationcitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020From Laboratory to Industrial Scale : Comparison of Short- and Long-Term Dielectric Performance of Silica-Polypropylene Capacitor Filmscitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitorscitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitors: Structure–Property Studies and the Role of Biaxial Stretching Conditionscitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitors:Structure–Property Studies and the Role of Biaxial Stretching Conditionscitations
- 2018Effect of temperature and humidity on dielectric properties of thermally sprayed alumina coatingscitations
- 2017DC conduction and breakdown behavior of thermally sprayed ceramic coatingscitations
- 2016Differences in AC and DC large-area breakdown behavior of polymer thin filmscitations
- 2016Role of microstructure in dielectric properties of thermally sprayed ceramic coatingscitations
- 2015Electric field dependency of dielectric behavior of thermally sprayed ceramic coatingscitations
- 2015DC Dielectric Breakdown Behavior of Thermally Sprayed Ceramic Coatingscitations
- 2015Dielectric Breakdown Strength of Thermally Sprayed Ceramic Coatingscitations
- 2014Influence of humidity and temperature on the dielectric properties of thermally sprayed ceramic MgAl2O4 coatingscitations
- 2013Dielectric properties of HVOF sprayed ceramic coatingscitations
Places of action
Organizations | Location | People |
---|
article
Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors
Abstract
Dielectric polymer nanocomposites are considered as one of the most promising insulation material candidates for future capacitive energy storage applications, providing tailorability of charge trapping and transport properties at the nanometric level which is a key for increased dielectric performance of biaxially oriented polypropylene (BOPP) for metallized film capacitors in high-voltage direct current (HVDC) applications. In this study, a comprehensive investigation of morphology and dielectric performance of pilot-scale BOPP nanocomposites with hexamethyldisilazane (HMDS)-treated hydrophobic fumed silica nanoparticles was carried out, providing critical perspectives on the performance and challenges of PNCs for thin film capacitors also in a broader context. In non-oriented cast films, incorporation of nanosilica modified the crystallization kinetics and α/β-crystalline spherulitic morphology of polypropylene and reduced the accumulation of space charge under a DC electric field. The nanocomposites exhibited promising dispersion characteristics in the nano-scale, however, the low amount of micron-sized agglomerates inherently present in commercial fumed silica persisted in the compounds which can become critical for thin film applications. Subsequently, biaxial-stretching-induced morphology development and dielectric properties of silica-BOPP nanocomposites were evaluated, highlighting the role of precursor morphology and film processing in the silica-BOPP film morphology, defects and dielectric performance. Charge trapping and transport properties of silica-BOPP films were investigated by isothermal and thermally stimulated techniques under high DC electro-thermal stresses, indicating profound modification of the trap density of states brought about by nanosilica. This resulted in more homogeneous space charge distribution and reduced temperature- and field dependent DC conductivity at 100 °C in comparison to neat BOPP under moderate field stresses (<200 V μm−1), while simultaneously maintaining low dielectric loss. However, the localized weak points caused by silica agglomerates still remain a challenge for the structural homogeneity and dielectric breakdown performance of thin BOPP films under extreme-field stress, hence emphasizing the need for further advancements in the agglomerate and PNC film morphology control to provide high-reliability nanodielectric capacitor thin films for practical HVDC film capacitor applications.