People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Momand, Jamo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2021Polytriphenylamine composites for energy storage electrodes:Effect of pendant vs. backbone polymer architecture of the electroactive groupcitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivitycitations
- 2021Polytriphenylamine composites for energy storage electrodescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Differences in Sb2Te3 growth by pulsed laser and sputter depositioncitations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2019Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodotscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applicationscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications:Progress and Prospectscitations
- 2018Tailoring the epitaxy of Sb2Te3 and GeTe thin films using surface passivationcitations
- 2017Formation of resonant bonding during growth of ultrathin GeTe filmscitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2016Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin filmscitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivity
Abstract
Intensive studies have been carried out over the past decade to identify nanostructured thermoelectric materials that allow the efficient conversion of waste heat to electrical power. However, less attention has been paid to the stability of such materials under operating temperatures, typically 400 degrees C or higher. Conventionally nanostructured ceramics tend to undergo grain growth at high temperature, lowering the density of interfaces and raising the thermal conductivity, which is detrimental to device performance. Therefore it is preferable to identify materials with stable nanostructures, for example systems that undergo spontaneous phase separation. Here we investigate PbTe-GeTe alloys, in which spinodal decomposition occurs on initial cooling from above 580 degrees C, forming complex nanostructures consisting of Ge-rich and Pb-rich domains on different size scales. The resulting dense arrangement of interfaces, combined with mass fluctuation associated with Pb-Ge mixing, enhances phonon scattering and strongly reduces the thermal conductivity. Here we focus on the nominal composition Pb0.49Ge0.51Te and show that by tuning the synthesis procedure, we are able to control the pattern of compositional domains and the density of interfaces between them. This allows low lattice thermal conductivities to be maintained even after thermal cycling over the operating temperature range.