People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mamakhel, Aref
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Synthesis and characterization of an organic-inorganic hybrid crystal
- 2022X-ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworkscitations
- 2022X-ray Electron Density Study of the Chemical Bonding Origin of Glass Formation in Metal–Organic Frameworkscitations
- 2022Composition space of PtIrPdRhRu high entropy alloy nanoparticles synthesized by solvothermal reactionscitations
- 2022Composition space of PtIrPdRhRu high entropy alloy nanoparticles synthesized by solvothermal reactionscitations
- 2022Combined characterization approaches to investigate magnetostructural effects in exchange-spring ferrite nanocomposite magnetscitations
- 2022Synthesis of Phase-Pure Thermochromic VO2 (M1)citations
- 2021Tailoring the stoichiometry of C 3 N 4 nanosheets under electron beam irradiationcitations
- 2021Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
- 2021Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiationcitations
- 2021Tuning of bandgaps and emission properties of light-emitting diode materials through homogeneous alloying in molecular crystalscitations
- 2019Promotion Mechanisms of Au Supported on TiO2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalystscitations
- 2019Promotion Mechanisms of Au Supported on TiO 2 in Thermal- And Photocatalytic Glycerol Conversioncitations
- 2019In Situ In-House Powder X-ray Diffraction Study of Zero-Valent Copper Formation in Supercritical Methanolcitations
- 2019Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversioncitations
- 2018Functionally Graded (PbTe)1-x(SnTe)x Thermoelectricscitations
- 2017In Situ PDF Study of the Nucleation and Growth of Intermetallic PtPb Nanocrystalscitations
- 2017Supercritical flow synthesis of Pt1-xRux nanoparticles: comparative phase diagram study of nanostructure versus bulkcitations
- 2016Electron Density Analysis of the "O-O" Charge-Shift Bonding in Rubrene Endoperoxidecitations
- 2015A Novel Dual-Stage Hydrothermal Flow Reactor
Places of action
Organizations | Location | People |
---|
article
Tuning of bandgaps and emission properties of light-emitting diode materials through homogeneous alloying in molecular crystals
Abstract
<p>Alloy formation is ubiquitous in inorganic materials science, and it strongly depends on the similarity between the alloyed atoms. Since molecules have widely different shapes, sizes and bonding properties, it is highly challenging to make alloyed molecular crystals. Here we report the generation of homogenous molecular alloys of organic light emitting diode materials that leads to tuning in their bandgaps and fluorescence emission. Tris(8-hydroxyquinolinato)aluminium (Alq3) and its Ga, In and Cr analogues (Gaq3, Inq3, and Crq3) form homogeneous mixed crystal phases thereby resulting in binary, ternary and even quaternary molecular alloys. The MxM′(1-x)q3 alloy crystals are investigated using X-ray diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy on single crystal samples, and photoluminescence properties are measured on the exact same single crystal specimens. The different series of alloys exhibit distinct trends in their optical bandgaps compared with their parent crystals. In the AlxGa(1-x)q3 alloys the emission wavelengths lie in between those of the parent crystals, while the AlxIn(1-x)q3 and GaxIn(1-x)q3 alloys have red shifts. Intriguingly, efficient fluorescence quenching is observed for the MxCr(1-x)q3 alloys (M = Al, Ga) revealing the effect of paramagnetic molecular doping, and corroborating the molecular scale phase homogeneity.</p>