People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Robinson, Bj
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Optimised power harvesting by controlling the pressure applied to molecular junctionscitations
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Tuning the thermoelectrical properties of anthracene-based self-assembled monolayerscitations
- 2020Molecular-scale thermoelectricity: As simple as 'ABC'citations
- 2017Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
- 2017Large-Area 2D-0D Heterostructures via Langmuir-Blodgett Film Deposition
- 2017Characterisation of local thermal properties in nanoscale structures by scanning thermal microscopy
- 2017SPM characterisation of nanomechanical proprieties of C60 monolayer formed by LB
- 2016Towards Robust Electroactive Biomaterials
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
Places of action
Organizations | Location | People |
---|
article
Optimised power harvesting by controlling the pressure applied to molecular junctions
Abstract
A major potential advantage of creating thermoelectric devices using self-assembled molecular layers is their mechanical flexibility. Previous reports have discussed the advantage of this flexibility from the perspective of facile skin attachment and the ability to avoid mechanical deformation. In this work, we demonstrate that the thermoelectric properties of such molecular devices can be controlled by taking advantage of their mechanical flexibility. The thermoelectric properties of self-assembled monolayers (SAMs) fabricated from thiol terminated molecules were measured with a modified AFM system, and the conformation of the SAMs was controlled by regulating the loading force between the organic thin film and the probe, which changes the tilt angle at the metal-molecule interface. We tracked the thermopower shift vs. the tilt angle of the SAM and showed that changes in both the electrical conductivity and Seebeck coefficient combine to optimize the power factor at a specific angle. This optimization of thermoelectric performance via applied pressure is confirmed through the use of theoretical calculations and is expected to be a general method for optimising the power factor of SAMs.