People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karwowska, Ewa
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Excellent antimicrobial and photocatalytic performance of C/GO/TiO2/Ag and C/TiO2/Ag hybrid nanocomposite beds against waterborne microorganismscitations
- 2021Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganismscitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021MXene-based materials for the application in point-of-use water filters
- 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatmentcitations
- 2020Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXenecitations
- 2019Influence of modification of Ti3C2MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plantscitations
- 2017Synthesis and Bioactivity of RGO/TiO2-Noble Metal Nanocomposite Flakescitations
- 2017Biosorption properties of RGO/Al2O3 nanocomposite flakes modified with Ag, Au, and Pd for water purificationcitations
- 2017Antibacterial potential of nanocomposite-based materials – a short reviewcitations
- 2017Comparative Assessment of Biocidal Activity of Different RGO/Ceramic Oxide-Ag Nanocompositescitations
- 2016Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurementscitations
- 2016Synthesis and Bioactivity of Reduced Graphene Oxide/Alumina-Noble Metal Nanocomposite Flakes
- 2015Influence of the Staphylococcus Aureus Bacteria Cells on the Zeta Potential of Graphene Oxide Modified with Alumina Nanoparticles in Electrolyte and Drinking Water Environmentcitations
- 2015The Impact of Zeta Potential and Physicochemical Properties of TiO2-Based Nanocomposites on Their Biological Activitycitations
- 2013Influence of Al2O3/Pr Nanoparticles on Soil, Air and Water Microorganismscitations
- 2011Al2O3‐Ag nanopowders: new method of synthesis, characterisation and biocidal activitycitations
Places of action
Organizations | Location | People |
---|
article
Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganisms
Abstract
Achieving both effective and sustainable water decontamination technology requires development of a universal filtration solution. However, effective removal of natural waterborne microorganisms still remains a challenge. The use of nanoparticles in water filters is promising but also leads to problems with their efficiency and safety. To cross these bottlenecks, we have designed a novel multifunctional carbon-supported bioactive hybrid nanocomposite filtration bed. For this purpose, we took advantage of granular activated carbon (C), graphene oxide (GO) and bioactive Al2O3/Ag nanocomposite particles (NCP). These components were assembled into a hybrid nanocomposite structure using facile in situ surface decoration via a sol–gel approach. This obtained C/GO/NCP filtration bed was thoroughly characterized in terms of morphology, structure and surface properties as well as further evaluated for tap water filtration efficiency. Analysis of the preferential sites for bacteria adsorption and biological tests under close-to-real static and dynamic filtration conditions has proved C/GO/NCP's efficiency in eliminating model and natural strains of waterborne microorganisms. At the same time, nanoparticles were not released into the filtrate, which confirmed material stability and safety. We have also revealed that C/GO/NCP nanofiltration bed was self-sterilizing which means that it entirely eliminated up to 100% of the filtered bacteria cells within short periods of contact time. What is more, the low-temperature thermal regeneration allowed recovering the assumed properties. In general, the obtained results indicate a breakthrough in designing hybrid-structured filtration beds that can be easily synthesized and safely used for drinking water decontamination.