People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cole, Cameron M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Emissive semi-interpenetrating polymer networks for ink-jet printed multilayer OLEDs
Abstract
Solution-processing of multilayered Organic Light Emitting Diodes (OLEDs) remains a challenge that is often addressed by cross-linking polymer precursors into insoluble networks. Herein, we blend an emissive polymer carrying a Thermally Activated Delayed Fluorescence (TADF) emitter and a host species with a photo-cross-linkable polymer containing ortho-methylbenzaldehyde and maleimide groups as reactive cross-linkers to form a Semi-Interpenetrating Polymer Network (SIPN) upon irradiation at 365 nm. The progress of the cross-linking via Diels–Alder [4 + 2]-cycloaddition is monitored by FT-IR-spectroscopy and is correlated with the solvent resistance of the SIPN. Furthermore, the influence of the molecular weight and the cross-linker content on the efficiency of the cross-linking are investigated. The resulting polymer films show a high solvent resistance evidenced by photoluminescence and AFM measurements and are thus suitable for a successive solution-processed layer. Furthermore, a comonomer carrying the commercial host molecule 1,3-bis(N-carbazolyl)benzene (mCP) was synthesized in high yields, copolymerized and integrated in the emissive SIPN with good resistance against organic solvents. Lastly, the polymer blends were processed with an ink-jet printer and turned into an insoluble SIPN.<br/>