People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kallio, Pasi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test?citations
- 2024Influence of CO2 laser surface treatment of basalt fibers on the mechanical properties of epoxy/basalt compositescitations
- 2024In-situ SEM micropillar compression and nanoindentation testing of SU-8 polymer up to 1000 s−1 strain ratecitations
- 2022Transparent Microelectrode Arrays Fabricated by Ion Beam Assisted Deposition for Neuronal Cell In Vitro Recordings
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2021Modulating impact resistance of flax epoxy composites with thermoplastic interfacial tougheningcitations
- 2021Modulating impact resistance of flax epoxy composites with thermoplastic interfacial tougheningcitations
- 2021Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy compositescitations
- 2020Transparent microelectrode arrays fabricated by ion beam assisted deposition for neuronal cell in vitro recordingscitations
- 2017Automated high-throughput microbond tester for interfacial shear strength studies
- 2016Nanocellulose based piezoelectric sensors
- 2015Adhesive Behavior Study Between Cellulose and Borosilicate Glass Using Colloidal Probe Techniquecitations
- 2015In situ hybridization of pulp fibres using Mg-Al layered double hydroxides
- 2011Towards automated manipulation and characterisation of paper-making fibres and its components
- 2011Micro- and nano-robotic manipulation and characterisation of paper-making fibres and its components
Places of action
Organizations | Location | People |
---|
article
Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivity
Abstract
<p>In this study, a nanocellulose-based material showing anisotopic conductivity is introduced. The material has up to 1000 times higher conductivity along the dry-line boundary direction than along the radial direction. In addition to the material itself, the method to produce the material is novel and is based on the alignment of cationic cellulose nanofibers (c-CNFs) along the dry-line boundary of an evaporating droplet composed of c-CNFs in two forms and conductive multi-walled carbon nanotubes (MWCNTs). On the one hand, c-CNFs are used as a dispersant of MWCNTs, and on the other hand they are used as an additional suspension element to create the desired anisotropy. When the suspended c-CNF is left out, and the nanocomposite film is manufactured using the high energy sonicated c-CNF/MWCNT dispersion only, conductive anisotropy is not present but evenly conducting nanocomposite films are obtained. Therefore, we suggest that suspending additional c-CNFs in the c-CNF/MWCNT dispersion results in nanocomposite films with anisotropic conductivity. This is a new way to obtain nanocomposite films with substantial anisotropic conductivity.</p>