People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kantor, Innokenty
Superconducting and other Innovative Materials and Devices Institute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Weyl semimetallic phase in high pressure CrSb 2 and structural compression studies of its high pressure polymorphs
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Weyl semimetallic phase in high pressure CrSb$_2$ and structural compression studies of its high pressure polymorphs
- 2024Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2021Size-induced amorphous structure in tungsten oxide nanoparticlescitations
- 2019Electronic origins of the giant volume collapse in the pyrite mineral MnS 2citations
- 2019Experimental investigation of FeCO3 (siderite) stability in Earth's lower mantle using XANES spectroscopycitations
- 2019Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cellcitations
- 2019Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cellcitations
- 2018Solving Controversies on the Iron Phase Diagram Under High Pressurecitations
- 2018Electronic origins of the giant volume collapse in the pyrite mineral <math altimg='si0047.gif' overflow='scroll'><msub><mrow><mi>MnS</mi></mrow><mrow><mn>2</mn></mrow></msub></math>citations
- 2016Universal amorphous-amorphous transition in Ge x Se 100−x glasses under pressurecitations
- 2016Thermal decomposition of ammonium hexachloroosmatecitations
- 2016Universal amorphous-amorphous transition in GexSe100−x glasses under pressurecitations
- 2016Universal amorphous-amorphous transition in Ge x Se 100-x glasses under pressurecitations
- 2011Pressure-induced structural phase transition of the iron end-member of ringwoodite (gamma-Fe(2)SiO(4)) investigated by X-ray diffraction and Mossbauer spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Size-induced amorphous structure in tungsten oxide nanoparticles
Abstract
The properties of functional materials are intrinsically linked to their atomic structure. When going to the nanoscale, size-induced structural changes in atomic structure often occur, however these are rarely well-understood. Here, we systematically investigate the atomic structure of tungsten oxide nanoparticles as a function of the nanoparticle size and observe drastic changes when the particles are smaller than 5 nm, where the particles are amorphous. The tungsten oxide nanoparticles are synthesized by thermal decomposition of ammonium metatungstate hydrate in oleylamine and by varying the ammonium metatungstate hydrate concentration, the nanoparticle size, shape and structure can be controlled. At low concentrations, nanoparticles with a diameter of 2-4 nm form and adopt an amorphous structure that locally resembles the structure of polyoxometalate clusters. When the concentration is increased the nanoparticles become elongated and form nanocrystalline rods up to 50 nm in length. The study thus reveals a size-dependent amorphous structure when going to the nanoscale and provides further knowledge on how metal oxide crystal structures change at extreme length scales.