Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Macias-Montero, Manuel

  • Google
  • 3
  • 11
  • 15

Consejo Superior de Investigaciones Científicas

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Carrier extraction from metallic perovskite oxide nanoparticles1citations
  • 2020Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystals7citations
  • 2020Role of the La/K Compositional Ratio in the Properties of Waveguides Written by Fs-Laser Induced Element Redistribution in Phosphate-Based Glasses7citations

Places of action

Chart of shared publication
Connor, Paul Alexander
1 / 16 shared
Irvine, John Thomas Sirr
1 / 169 shared
Švrček, Vladimir
2 / 4 shared
Velusamy, Tamilselvan
1 / 2 shared
Ni, Chengsheng
1 / 14 shared
Mariotti, Davide
2 / 17 shared
Mcdonald, Calum
1 / 8 shared
Maguire, Paul
1 / 22 shared
Alessi, Bruno
1 / 2 shared
Bürkle, Marius
1 / 1 shared
Lozach, Mickaël
1 / 3 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Connor, Paul Alexander
  • Irvine, John Thomas Sirr
  • Švrček, Vladimir
  • Velusamy, Tamilselvan
  • Ni, Chengsheng
  • Mariotti, Davide
  • Mcdonald, Calum
  • Maguire, Paul
  • Alessi, Bruno
  • Bürkle, Marius
  • Lozach, Mickaël
OrganizationsLocationPeople

article

Carrier extraction from metallic perovskite oxide nanoparticles

  • Connor, Paul Alexander
  • Irvine, John Thomas Sirr
  • Švrček, Vladimir
  • Velusamy, Tamilselvan
  • Ni, Chengsheng
  • Macias-Montero, Manuel
  • Mariotti, Davide
  • Mcdonald, Calum
  • Maguire, Paul
Abstract

We observe the extraction of carriers excited between two types of bands in the perovskite oxide, Sr-deficient strontium niobate (Sr<sub>0.9</sub>NbO<sub>3</sub>). Sr<sub>0.9</sub>NbO<sub>3</sub> exhibits metallic behaviour and high conductivity, whilst also displaying broad absorption across the ultraviolet, visible, and near-infrared spectral regions, making it an attractive material for solar energy conversion. Furthermore, the optoelectronic properties of strontium niobate can easily be tuned by varying the Sr fraction or through doping. Sr-deficient strontium niobate exhibits a split conduction band, which enables two types of optical transitions: intraband and interband. However, whether such carriers can be extracted from an unusual material as such remains unproven. In this report, we have overcome the immense challenge of photocarrier extraction by fabricating an extremely thin absorber layer of Sr<sub>0.9</sub>NbO<sub>3</sub> nanoparticles. These findings open up great opportunities to harvest a very broad solar spectral absorption range with reduced recombination losses.

Topics
  • nanoparticle
  • perovskite
  • extraction
  • Strontium