Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nwosu, Christian N.

  • Google
  • 4
  • 4
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Investigating the Effects of Graphene Nanoplatelets (GNPs) and external Waterbased Crosslinker (eWCL) on the Mechanical and Thermal properties of Waterbased Elastomer (WBE) Nanocompositescitations
  • 2023Graphene Nanoplatelets (GNPs) Enhanced Water-based Elastomer Nanocomposites -tailored production from Nanoscale to Macrostructurescitations
  • 2021Graphene and Water-Based Elastomer Nanocomposites – A Review17citations
  • 2021Graphene and water-based elastomer nanocomposites - a review.17citations

Places of action

Chart of shared publication
Soutis, Costas
2 / 356 shared
Vijayaraghavan, Aravind S.
3 / 15 shared
Iliut, Maria
4 / 11 shared
Vijayaraghavan, Aravind
1 / 7 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Soutis, Costas
  • Vijayaraghavan, Aravind S.
  • Iliut, Maria
  • Vijayaraghavan, Aravind
OrganizationsLocationPeople

article

Graphene and Water-Based Elastomer Nanocomposites – A Review

  • Vijayaraghavan, Aravind S.
  • Nwosu, Christian N.
  • Iliut, Maria
Abstract

Water-based elastomers (WBEs) are polymeric elastomers in aqueous systems. WBEs have recently continued to gain wide acceptability by both academia and industry due to their remarkable environmental and occupational safety friendly nature, as a non-toxic elastomeric dispersion with low-to-zero volatile organic compound (VOC) emission. However, their inherent poor mechanical and thermal properties remain a drawback to these sets of elastomers. Hence, nano-fillers such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs) are being employed for the reinforcement and enhancement of this set of elastomers. This work is geared towards a critical review and summation of the state-of-the-art developments of graphene enhanced water-based elastomer composites (G-WBEC), including graphene and composite production processes, properties, characterisation techniques and potential commercial applications. The dominant production techniques, such as emulsion mixing and in situ polymerisation processes, which include Pickering emulsion, mini-emulsion and micro-emulsion, as well as ball-milling approach, are systematically evaluated. Details of the account of mechanical properties, electrical conductivity, thermal stability and thermal conductivity enhancements, as well as multifunctional properties of G-WBEC are discussed, with further elaboration on the structure-property relationship effects (such as dispersion and filler-matrix interface) through effective and non-destructive characterisation tools like Raman and XRD, among others. The paper also evaluates details of the current application attempts and potential commercial opportunities for G-WBEC utilisation in aerospace, automotive, oil and gas, biomedicals, textiles, sensors, electronics, solar energy, and thermal management. This journal is

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • compound
  • x-ray diffraction
  • grinding
  • milling
  • organic compound
  • thermal conductivity
  • electrical conductivity
  • elastomer