People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kendrick, Emma
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Design of slurries for 3D printing of sodium-ion battery electrodescitations
- 2024Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2023Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2023Impact of Short Chain Polymer in Ionic Conductivity for Polymer Solid-State Electrolyte Towards Inter-/Intramolecular O-H Bond
- 2023Methodology in quality control for electrode processingcitations
- 2023Rapid sintering of Li6.5La3Zr1Nb0.5Ce0.25Ti0.25O12 for high density lithium garnet electrolytes with current induced in-situ interfacial resistance reduction.citations
- 2022Roadmap on Li-ion battery manufacturing researchcitations
- 2022Roadmap on Li-ion battery manufacturing research
- 2022Benign solvents for recycling and re-use of a multi-layer battery pouch.citations
- 2022Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing processcitations
- 2022Benign solvents for recycling and re-use of a multi-layer battery pouchcitations
- 2022Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodescitations
- 2022Rheology and structure of lithium‐ion battery electrode slurriescitations
- 2021On the solubility and stability of polyvinylidene fluoridecitations
- 2021Microstructural design of printed graphite electrodes for lithium-ion batteriescitations
- 2021Evaluation of Ga0.2Li6.4Nd3Zr2O12 garnetscitations
- 2020Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imagingcitations
- 2010Crystal chemistry and optimization of conductivity in 2A, 2M and 2H alkaline earth lanthanum germanate oxyapatite electrolyte polymorphscitations
- 2007Investigation of the structural changes on Zn doping in the apatite-type oxide ion conductor La9.33Si6O26citations
- 2007Structural studies of the proton conducting perovskite 'La0.6Ba0.4ScO2.8'citations
- 2007Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moietiescitations
- 2006Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductorscitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of Ga0.2Li6.4Nd3Zr2O12 garnets
Abstract
The next major leap in energy storage is thought to arise from a practical implementation of all solid-state batteries, which remain largely confined to the small scale due to issues in manufacturing and mechanical stability. Lithium batteries are amongst the most sought after, for the high expected energy density and improved safety characteristics, however the challenge of finding a suitable solid-state electrolyte remains. Lithium rich garnets are prime contenders as electrolytes, owing to their high ionic conductivity (> 0.1 mS cm<sup>-1</sup>), wide electrochemical window (0 – 6 V) and stability with Li metal. However, the high Young’s modulus of these materials, poor wetting of Li metal and rapid formation of Li<sub>2</sub>CO<sub>3</sub> passivating layers tends to give a detrimentally large resistance at the solid-solid interface, limiting their application in solid state batteries. Most studies have focused on La based systems, with very little work on other lanthanides. Here we report a study of the Nd based garnet Ga<sub>0.2</sub>Li<sub>6.4</sub>Nd<sub>3</sub>Zr<sub>2</sub>O<sub>12,</sub> illustrating substantial differences in the interfacial behaviour. This garnet shows very low interfacial resistance attributed to dopant exsolution which, when combined with moderate heating (175°C, 1h) with Li metal, we suggest forms Ga-Li eutectics which significantly reduces the resistance at the Li/Garnet interface to as low as 67 Ω cm<sup>2</sup> (much lower than equivalent La based systems). The material also shows intrinsically high density (93%) and good conductivity (≥ 0.2 mS cm<sup>-1</sup>) via conventional furnaces in air. It is suggested these garnets are particularly well suited to provide a mixed conductive interface (in combination with other garnets) which could enable future solid-state batteries.