People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hatanpää, Timo Tapio
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 20243D-printed sensor electric circuits using atomic layer depositioncitations
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2021Highly conductive and stable Co9S8 thin films by atomic layer depositioncitations
- 2019Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and watercitations
- 2019Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealingcitations
- 2019Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert‐Butylhydrazine as Precursorscitations
- 2019Nickel Germanide Thin Films by Atomic Layer Depositioncitations
- 2019Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)(2)(THF) and H2Ocitations
- 2019Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Filmscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2018Diamine Adduct of Cobalt(II) Chloride as a Precursor for Atomic Layer Deposition of Stoichiometric Cobalt(II) Oxide and Reduction Thereof to Cobalt Metal Thin Filmscitations
- 2017Thermal Atomic Layer Deposition of Continuous and Highly Conducting Gold Thin Filmscitations
- 2017Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and watercitations
- 2017Atomic Layer Deposition of Crystalline MoS2 Thin Filmscitations
- 2017Studies on Thermal Atomic Layer Deposition of Silver Thin Filmscitations
- 2016Potential gold(I) precursors evaluated for atomic layer depositioncitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2016Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layerscitations
- 2014Metal oxide films
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
- 2011Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperaturescitations
- 2011Atomic Layer Deposition of GeTe
- 2011Crystal structures and thermal properties of some rare earth alkoxides with tertiary alcoholscitations
- 2009Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and seleniumcitations
- 2009Alkylsilyl compounds of selenium and tellurium
- 2007Study of a novel ALD process for depositing MgF2 thin filmscitations
- 2007Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylatescitations
Places of action
Organizations | Location | People |
---|
article
Highly conductive and stable Co9S8 thin films by atomic layer deposition
Abstract
<p>Co9S8 is an interesting sulfide material with metallic conductivity that has shown promise for various energy applications. Herein, we report a new atomic layer deposition process producing crystalline, pure, and highly conductive Co9S8 thin films using CoCl2(TMEDA) (TMEDA = N,N,N ',N '-tetramethylethylenediamine) and H2S as precursors at 180-300 degrees C. The lowest resistivity of 80 mu omega cm, best uniformity, and highest growth rate are achieved at 275 degrees C. Area-selective deposition is enabled by inherent substrate-dependency of film nucleation. We show that a continuous and conductive Co9S8 film can be prepared on oxide-covered silicon without any growth on Si-H. Besides silicon, Co9S8 films can be grown on a variety of substrates. The first example of an epitaxial Co9S8 film is shown using a GaN substrate. The Co9S8 films are stable up to 750 degrees C in N-2, 400 degrees C in forming gas, and 225 degrees C in O-2 atmosphere. The reported ALD process offers a scalable and cost-effective route to high-quality Co9S8 films, which are of interest for applications ranging from electrocatalysis and rechargeable batteries to metal barrier and liner layers in microelectronics and beyond.</p>