People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hietala, Sami
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2025Amorphous solid dispersions of amphiphilic polymer excipients and indomethacin prepared by hot melt extrusioncitations
- 2024Amorphous solid dispersions of amphiphilic polymer excipients and indomethacin prepared by hot melt extrusioncitations
- 2024Area-Selective Etching of Poly(lactic acid) Films via Catalytic Hydrogenolysis and Crackingcitations
- 2023Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applicationscitations
- 2021Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyratecitations
- 2021Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocyclescitations
- 2020Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductilitycitations
- 2017One-step carbon nanotubes grafting with styrene-co-acrylonitrile by reactive melt blending for electrospinning of conductive reinforced composite membranescitations
- 2017Titanium alkylphosphate functionalised mesoporous silica for enhanced uptake of rare-earth ionscitations
- 2016Rheological properties of thermoresponsive nanocomposite hydrogelscitations
- 2015Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosancitations
- 2015Carbocatalysed Oxidative C-sp2-C-sp2 Homocouplings of Benzo-Fused Heterocyclescitations
- 2015Carbocatalysed Oxidative C sp 2 -C sp 2 Homocouplings of Benzo-Fused Heterocyclescitations
- 2013Chemistry and water-repelling properties of phenyl-incorporating wood compositescitations
- 2013Thermoresponsiveness of PDMAEMA. Electrostatic and stereochemical effectscitations
- 2012Crystal morphology modification by the addition of tailor-made stereocontrolled poly(N-isopropyl acrylamide)citations
- 2009Rheological properties of associative star polymers in aqueous solutionscitations
- 2009Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topologycitations
- 2009Association behavior and properties of copolymers of perfluorooctyl ethyl methacrylate and eicosanyl methacrylatecitations
Places of action
Organizations | Location | People |
---|
article
Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles
Abstract
simple “reagent-free” thermal air treatment turns active carbon into a mildly oxidized material with increased quinoidic content that catalytically dehydrogenates saturated N-heterocycles to the corresponding aromatic compounds. Thermal decarboxylation improves the activity of the catalyst further, making it overall more efficient compared to other widely used carbocatalysts such as oxidized carbon nanotubes, graphene oxide and untreated active carbons. The substrate scope covers 1,2,3,4-tetrahydroquinolines (THQ), 1,2,3,4-tetrahydro-β-carbolines and related N-heterocyclic structures. The developed protocol also successfully dehydrogenates 3-(cyclohexenyl)indoles to 3-aryl indoles, opening a concise transition metal-free approach to (hetero)biaryls as exemplified with the synthesis of the core structure of progesterone receptor antagonist. Hammett plots, deuterium KIE measurements and computations at DFT level suggest that bimolecular hydride transfer mechanism is more likely to operate between THQs and the o-quinoidic sites of the catalyst, than the addition–elimination hemiaminal route. Comparison of structural parameters and catalytic performance of various oxidized carbon materials, prepared by different oxidative and optional post treatments, revealed that quinoidic content and surface area correlate with the obtained yields, while carboxylic acid content has a clear inhibiting effect for the studied oxidative dehydrogenations (ODHs). The carbocatalyst itself can be prepared from inexpensive and environmentally benign starting materials and its catalytic activity can be enhanced by a simple thermal oxidation in air that produces no reagent waste. Furthermore, oxygen is used as terminal oxidant, and the carbocatalyst is recyclable at least six times without a notable loss of activity.