People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Mads Ry Vogel
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Composition-dependent spin exchange interaction for multiferroicity in perovskite Pb(Fe 1/2 Nb 1/2 )O 3citations
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024Weyl semimetallic phase in high pressure CrSb 2 and structural compression studies of its high pressure polymorphs
- 2024Weyl semimetallic phase in high pressure CrSb$_2$ and structural compression studies of its high pressure polymorphs
- 2024Composition-dependent spin exchange interaction for multiferroicity in perovskite Pb(Fe1/2Nb1/2)O3citations
- 2024Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO3 ceramicscitations
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO 3 ceramicscitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of Pb x Pd y intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2023Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cellscitations
- 2022An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2022Methods—Spatially Resolved Diffraction Study of the Uniformity of a Li-Ion Pouch Cellcitations
- 2022An Easy‐to‐Use Custom‐Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2021Size-induced amorphous structure in tungsten oxide nanoparticlescitations
- 2021Low temperature aging in a molecular glasscitations
- 2017Accurate charge densities from powder X-ray diffraction - a new version of the Aarhus vacuum imaging-plate diffractometercitations
- 2017Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2citations
- 2017Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH4)2[Cu(H2O)6](SO4)2citations
- 2012Charge density study of two FeS2 polymorphs
- 2012Charge density study of two FeS2 polymorphs:Experimental charge density study of two FeS2 structures
Places of action
Organizations | Location | People |
---|
article
Low temperature aging in a molecular glass
Abstract
<p>Glassy films of cis-methyl formate show spontaneous dipole orientation on deposition from the vacuum, the so-called 'spontelectric effect', creating surface potentials and electric fields within the films. We follow the decay of these fields, and their accompanying dipole orientation, on the hours timescale at deposition temperatures between 40 K and 55 K. Our data trace the low temperature 'secondary decay' mechanism, at tens of degrees below the glass transition temperature of 90 K. We show that secondary decay is due to molecular rotation, with associated activation energies lying between 0.1 and 0.2 eV. Diffusion is absent, as established from published neutron reflectivity data. Using an analytical model for the spontelectric effect, data are placed on a quantitative footing, showing that angular motion in excess of 50° reproduces the observed values of activation energies. Exploitation of the spontelectric effect is new in the study of glass aging and is shown here to give insight into the elusive processes which take place far from the molecular glass transition temperature. This journal is </p>