Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kulyk, Kostiantyn

  • Google
  • 2
  • 5
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Nanosized copper (ii) oxide/silica for catalytic generation of nitric oxide from S-nitrosothiols.20citations
  • 2015Chemisorption and thermally induced transformations of polydimethylsiloxane on the surface of nanoscale silica and ceria/silica22citations

Places of action

Chart of shared publication
Palianytsia, Borys
1 / 1 shared
Kulik, T. V.
1 / 1 shared
Borysenko, Mykola
1 / 4 shared
Alexander, John D.
1 / 1 shared
Mikhalovska, Lyuba
1 / 4 shared
Chart of publication period
2020
2015

Co-Authors (by relevance)

  • Palianytsia, Borys
  • Kulik, T. V.
  • Borysenko, Mykola
  • Alexander, John D.
  • Mikhalovska, Lyuba
OrganizationsLocationPeople

article

Nanosized copper (ii) oxide/silica for catalytic generation of nitric oxide from S-nitrosothiols.

  • Kulyk, Kostiantyn
Abstract

Nitric oxide NO, mediates inflammatory and thrombotic processes and designing biomaterials capable of releasing NO in contact with biological tissues is considered to be a major factor aimed at improving their bio- and haemocompatibility and antibacterial properties. Their NO-releasing capacity however is limited by the amount of the NO-containing substance incorporated in the bulk or immobilised on the surface of a biomaterial. An alternative approach is based on the design of a material generating nitric oxide from endogenous NO bearing metabolites by their catalytic decomposition. It offers, at least in theory, an unlimited source of NO for as long as the material remains in contact with blood and the catalyst maintains its activity. In this paper we studied the catalytic properties of novel nanostructured CuO/SiO2 catalysts in generating NO by decomposition of S-nitrosoglutathione (GSNO) in vitro. CuO/SiO2 catalysts with different CuO loadings were synthesized by chemisorption of copper(ii) acetylacetonate on fumed nanosilica followed by calcination. CuO content was controlled by a number of chemisorption-calcination cycles. Fourier-transform infrared spectroscopy and thermogravimetric analysis confirmed the formation of CuO/SiO2 nanoparticles (NPs) with particle size of CuO phase in the range from 71 to 88 nm. Scanning electron microscopy images revealed a uniform distribution of NPs without their sintering or agglomeration. All the materials of the CuO/SiO2 NP series exhibited NO-generating activity from GSNO confirmed by the Griess assay and by measuring the concentration of nitrite and nitrate anions in model solutions such as phosphate buffered saline and bovine serum. This activity is dependent on the material specific surface area and CuO exposure on the surface rather than CuO bulk content. The rate of NO production increased at higher initial concentration of the NO-bearing substrate studied in the range between 0.01 mM and 1.0 mM RSNO, which covers its physiological level. CuO/SiO2 NPs can be used to design polymers with NO generating properties at blood-biomaterial interface which are expected to have improved biocompatibility thus enhancing their potential for medical applications such as surgical tubing, peripheral venous catheters, auxiliary blood circulation devices and drug-eluting balloons.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • scanning electron microscopy
  • theory
  • copper
  • thermogravimetry
  • biomaterials
  • decomposition
  • sintering
  • biocompatibility
  • infrared spectroscopy