People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Guocong
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Fabrication of Cr-ZnFe2O4/S-g-C3N4 Heterojunction Enriched Charge Separation for Sunlight Responsive Photocatalytic Performance and Antibacterial Studycitations
- 2022Construction of a Well-Defined S-Scheme Heterojunction Based on Bi-ZnFe2O4/S-g-C3N4 Nanocomposite Photocatalyst to Support Photocatalytic Pollutant Degradation Driven by Sunlightcitations
- 2022Synergetic intimate interface contacts of 2D/1D S-g-C3N4/Co-NiS heterojunction with spatial charge separation for boosting photodegradation of MB and inactivation of pathogens under visible light irradiationcitations
- 2022Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible lightcitations
- 2022Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgelcitations
- 2021A morphology controlled surface sulfurized CoMn2O4microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolutioncitations
- 2021The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocompositecitations
- 2021Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging applicationcitations
- 2021Designing highly potential photocatalytic comprising silver deposited ZnO NPs with sulfurized graphitic carbon nitride (Ag/ZnO/S-g-C3N4) ternary compositecitations
- 2021Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applicationscitations
Places of action
Organizations | Location | People |
---|
article
A morphology controlled surface sulfurized CoMn2O4microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution
Abstract
<p>Transition metal mixed oxides have drawn extensive interest as oxygen evolution electrocatalyst alternatives to noble metal-based materials but generally involve prolonged synthesis routes and limited electrocatalytic activity and stability. Herein we report surface sulfurized CoMn2O4 microspikes (S-CoMn2O4-MSs) grown directly at low temperature and ambient atmosphere using a two-step facile synthesis protocol, requiring only 310 s. S-CoMn2O4-MSs showed excellent OER activity with an overpotential of 300 mV at 10 mA cm-2 while pristine Mn3O4 and Co3O4 required 580 and 410 mV to deliver the same current density value. Moreover, we rationally designed the study to gradually decrease the Tafel slope value from 307.5 to 26.2 mV dec-1 for the best electrocatalyst, with excellent stability at 20 mA cm-2 for 24 h without any binder. This overall performance compares well with very recently reported oxides and CoMn2O4 based systems and the as-synthesized material showed highly competitive overall performance. During this work, the stability of the S2- layer remained the main concern and was confirmed by several characterization techniques. We investigated the surface blockage role of the surface S2- layer and, therefore, optimized the degree of sulfurization for best performance. In the end, we attributed and supported the exciting performance of S-CoMn2O4 MSs to the synergistic effect of Co and Mn, their unique morphology, the easily oxidizable lower oxidation states of cobalt (due to surface sulfurization treatment), and the large interior structure for increased contact with the electrolyte.</p>