Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Behboodi-Sadabad, F.

  • Google
  • 1
  • 12
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells32citations

Places of action

Chart of shared publication
Richards, Bryce S.
1 / 23 shared
Hossain, I. M.
1 / 2 shared
Schwenzer, J. A.
1 / 1 shared
Trouillet, V.
1 / 7 shared
Khan, M. R.
1 / 2 shared
Lahann, J.
1 / 4 shared
Ternes, S.
1 / 1 shared
Byranvand, M. Malekshahi
1 / 2 shared
Eliwi, A. Alrhman
1 / 1 shared
Farooq, A.
1 / 3 shared
Welle, Alexander
1 / 47 shared
Paetzold, Ulrich Wilhelm
1 / 19 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Richards, Bryce S.
  • Hossain, I. M.
  • Schwenzer, J. A.
  • Trouillet, V.
  • Khan, M. R.
  • Lahann, J.
  • Ternes, S.
  • Byranvand, M. Malekshahi
  • Eliwi, A. Alrhman
  • Farooq, A.
  • Welle, Alexander
  • Paetzold, Ulrich Wilhelm
OrganizationsLocationPeople

article

Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells

  • Richards, Bryce S.
  • Hossain, I. M.
  • Schwenzer, J. A.
  • Trouillet, V.
  • Khan, M. R.
  • Lahann, J.
  • Ternes, S.
  • Byranvand, M. Malekshahi
  • Eliwi, A. Alrhman
  • Farooq, A.
  • Behboodi-Sadabad, F.
  • Welle, Alexander
  • Paetzold, Ulrich Wilhelm
Abstract

Reducing non-radiative recombination losses by advanced passivation strategies is pivotal to maximize the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Previously, polymers such as poly(methyl methacrylate), poly(ethylene oxide), and polystyrene were successfully applied in solution-processed passivation layers. However, controlling the thickness and homogeneity of these ultra-thin passivation layers on top of polycrystalline perovskite thin films is a major challenge. In response to this challenge, this work reports on chemical vapor deposition (CVD) polymerization of poly(p-xylylene) (PPX) layers at controlled substrate temperatures (14–16 °C) for efficient surface passivation of perovskite thin films. Prototype double-cation PSCs using a ∼1 nm PPX passivation layer exhibit an increase in open-circuit voltage (V$_{OC}$) of ∼40 mV along with an enhanced fill factor (FF) compared to a non-passivated PSC. These improvements result in a substantially enhanced PCE of 20.4% compared to 19.4% for the non-passivated PSC. Moreover, the power output measurements over 30 days under ambient atmosphere (relative humidity ∼40–50%) confirm that the passivated PSCs are more resilient towards humidity-induced degradation. Considering the urge to develop reliable, scalable and homogeneous deposition techniques for future large-area perovskite solar modules, this work establishes CVD polymerization as a novel approach for the passivation of perovskite thin films.

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • polymer
  • thin film
  • chemical vapor deposition
  • power conversion efficiency