People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Paetzold, Ulrich Wilhelm
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Hybrid Two‐Step Inkjet‐Printed Perovskite Solar Cellscitations
- 2024Modeling and Fundamental Dynamics of Vacuum, Gas, and Antisolvent Quenching for Scalable Perovskite Processescitations
- 2024Energy Yield Modeling of Perovskite–Silicon Tandem Photovoltaics: Degradation and Total Lifetime Energy Yieldcitations
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cellscitations
- 2023Decoupling Bimolecular Recombination Mechanisms in Perovskite Thin Films Using Photoluminescence Quantum Yield
- 2023Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements
- 2023Intensity Dependent Photoluminescence Imaging for In‐Line Quality Control of Perovskite Thin Film Processingcitations
- 2022Energy Yield Modeling of Bifacial All‐Perovskite Two‐Terminal Tandem Photovoltaicscitations
- 2022Mitigation of Open‐Circuit Voltage Losses in Perovskite Solar Cells Processed over Micrometer‐Sized‐Textured Si Substratescitations
- 2021A Self‐Assembly Method for Tunable and Scalable Nano‐Stamps: A Versatile Approach for Imprinting Nanostructurescitations
- 2021Analytical Study of Solution-Processed Tin Oxide as Electron Transport Layer in Printed Perovskite Solar Cellscitations
- 2021From Groundwork to Efficient Solar Cells: On the Importance of the Substrate Material in Co‐Evaporated Perovskite Solar Cellscitations
- 2021Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskitescitations
- 2020Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cellscitations
- 2019Continuous wave amplified spontaneous emission in phase-stable lead halide perovskitescitations
- 2019Vacuum‐Assisted Growth of Low‐Bandgap Thin Films (FA$_{0.8}$MA$_{0.2}$Sn$_{0.5}$Pb$_{0.5}$I$_{3}$) for All‐Perovskite Tandem Solar Cellscitations
- 2019Inkjet‐Printed Micrometer‐Thick Perovskite Solar Cells with Large Columnar Grainscitations
- 2017All-Angle Invisibility Cloaking of Contact Fingers on Solar Cells by Refractive Free-Form Surfacescitations
Places of action
Organizations | Location | People |
---|
article
Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells
Abstract
Reducing non-radiative recombination losses by advanced passivation strategies is pivotal to maximize the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Previously, polymers such as poly(methyl methacrylate), poly(ethylene oxide), and polystyrene were successfully applied in solution-processed passivation layers. However, controlling the thickness and homogeneity of these ultra-thin passivation layers on top of polycrystalline perovskite thin films is a major challenge. In response to this challenge, this work reports on chemical vapor deposition (CVD) polymerization of poly(p-xylylene) (PPX) layers at controlled substrate temperatures (14–16 °C) for efficient surface passivation of perovskite thin films. Prototype double-cation PSCs using a ∼1 nm PPX passivation layer exhibit an increase in open-circuit voltage (V$_{OC}$) of ∼40 mV along with an enhanced fill factor (FF) compared to a non-passivated PSC. These improvements result in a substantially enhanced PCE of 20.4% compared to 19.4% for the non-passivated PSC. Moreover, the power output measurements over 30 days under ambient atmosphere (relative humidity ∼40–50%) confirm that the passivated PSCs are more resilient towards humidity-induced degradation. Considering the urge to develop reliable, scalable and homogeneous deposition techniques for future large-area perovskite solar modules, this work establishes CVD polymerization as a novel approach for the passivation of perovskite thin films.