People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Qingfeng
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2022Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cellscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progresscitations
- 2020From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolidescitations
- 2020Process for producing metal alloy nanoparticles
- 2019Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cellscitations
- 2019Dynamics of double-pulse laser printing of copper microstructurescitations
- 2018Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameterscitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytescitations
- 2016Guanidinium nonaflate as a solid-state proton conductorcitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2016Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrationscitations
- 2015The effect of preparation method on the proton conductivity of indium doped tin pyrophosphatescitations
- 2015Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranescitations
- 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acidcitations
- 2014Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acidcitations
- 2014Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes
- 2014Invited: A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells
- 2014Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cellscitations
- 2014Physicochemical properties of 1,2,4-triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte
- 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures
- 2014High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures
- 2013Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranescitations
- 2011Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cellscitations
- 20101.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysiscitations
- 2001Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells]
Places of action
Organizations | Location | People |
---|
article
From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides
Abstract
Polybenzimidazoles represent a large family of high-performance polymers containing benzimidazole groups as part of the structural repeat unit. New application areas in electrochemical cells and separation processes have emerged during the last two decades, which has been a major driver for the tremendous development of new polybenzimidazole chemistries and materials in recent years. This comprehensive treatise is devoted to an investigation of the structural scope of polybenzimidazole derivatives, polybenzimidazole modifications and the acid-base behavior of the resulting materials. Advantages and limitations of different synthetic procedures and pathways are analyzed, with focus on homogeneous solution polymerization. The discussion extends to solution properties and the challenges that are faced in connection to molecular weight determination and processing. Methods for polybenzimidazole grafting or crosslinking, in particular by N-coupling, are reviewed and successful polymer blend strategies are identified. The amphoteric nature of benzimidazole groups further enriches the chemistry of polybenzimidazoles, as cationic or anionic ionenes are obtained depending on the pH. In the presence of protic acids, such as phosphoric acid, cationic ionenes in the form of protic polybenzimidazoliums are obtained, which dramatically changes the physicochemical properties of the material. Cationic ionenes are also derived by complete N-alkylation of a polybenzimidazole to the corresponding poly(dialkyl benzimidazolium), which has been intensively explored recently as a new direction in the field of anion exchange membranes. In the higher end of the pH scale in aqueous hydroxide solutions, anionic ionenes in the form of polybenzimidazolides are obtained as a result of deprotonation of the benzimidazole groups. The ionization of the polymer results in dramatically changed physicochemical properties as compared to the pristine material, which is described and discussed. From a technological point of view, performance and ...